【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
![]()
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發生的概率,記
表示2臺機器三年內共需更換的易損零件數,
表示購買2臺機器的同時購買的易損零件數.
(Ⅰ)求
的分布列;
(Ⅱ)若要求
,確定
的最小值;
(Ⅲ)以購買易損零件所需費用的期望值為決策依據,在
與
之中選其一,應選用哪個?
【答案】(Ⅰ)見解析(Ⅱ)19(Ⅲ)![]()
【解析】試題分析:(Ⅰ)由已知得X的可能取值為16,17,18,19,20,21,22,分別求出相應的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=
,P(X≤19)=
.由此能確定滿足P(X≤n)≥0.5中n的最小值.(Ⅲ)由X的分布列得P(X≤19)=
.求出買19個所需費用期望EX1和買20個所需費用期望EX2,由此能求出買19個更合適
試題解析:(Ⅰ)由柱狀圖并以頻率代替概率可得,一臺機器在三年內需更換的易損零件數為8,9,10,11的概率分別為0.2,0.4,0.2,0.2,從而
;
;
;
;
;
;
.
所以
的分布列為
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|
|
|
|
|
|
|
|
(Ⅱ)由(Ⅰ)知
,
,故
的最小值為19.
(Ⅲ)記
表示2臺機器在購買易損零件上所需的費用(單位:元).
當
時,![]()
.
當
時,
![]()
.
可知當
時所需費用的期望值小于
時所需費用的期望值,故應選
.
科目:高中數學 來源: 題型:
【題目】某校高一(1)(2)兩個班聯合開展“詩詞大會進校園,國學經典潤心田”古詩詞競賽主題班會活動,主持人從這兩個班分別隨機選出20名同學進行當場測試,他們的測試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統計如圖(單位:分): ![]()
高一(2)班20名學生成績莖葉圖:
4 | 5 |
5 | 2 |
6 | 4 5 6 8 |
7 | 0 5 5 8 8 8 8 9 |
8 | 0 0 5 5 |
9 | 4 5 |
(Ⅰ)分別計算兩個班這20名同學的測試成績在[80,90)的頻率,并補全頻率分布直方圖;
(Ⅱ)分別從兩個班隨機選取1人,設這兩人中成績在[80,90)的人數為X,求X的分布列(頻率當作概率使用).
(Ⅲ)運用所學統計知識分析比較兩個班學生的古詩詞水平.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年入冬以來,各地霧霾天氣頻發,
頻頻爆表(
是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與
的濃度是否相關,某市現采集周一到周五某一時間段車流量與
的數據如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量 | 50 | 51 | 54 | 57 | 58 |
| 69 | 70 | 74 | 78 | 79 |
(1)請根據上述數據,在下面給出的坐標系中畫出散點圖;
![]()
(2)試判斷
與
是否具有線性關系,若有請求出
關于
的線性回歸方程
,若沒有,請說明理由;
(3)若周六同一時間段的車流量為60萬輛,試根據(2)得出的結論,預報該時間段的
的濃度(保留整數).
參考公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區域內,說明選用的模型比較合適;②用相關指數可以刻畫回歸的效果,值越小說明模型的擬合效果越好;③比較兩個模型的擬合效果,可以比較殘差平方和大小,殘差平方和越小的模型擬合效果越好.其中說法正確的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有兩個分廠生產某種零件,按規定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數 | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數 | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計兩個分廠生產的零件的優質品率;
(2)由以上統計數據填下面
列聯表,并問是否有
的把握認為“兩個分廠生產的零件的質量有差異”.
甲 廠 | 乙 廠 | 合計 | |
優質品 | |||
非優質品 | |||
合計 |
附: ![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=1,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
為參數).
(1)寫出直線l與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換
得到曲線C′,設曲線C′上任一點為M(x,y),求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A.設p:f(x)=x3+2x2+mx+1是R上的單調增函數,
,則p是q的必要不充分條件
B.若命題
,則¬p:?x∈R,x2﹣x+1>0
C.奇函數f(x)定義域為R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知過點
的直線
的參數方程是
(
為參數).以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程式為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標方程;
(Ⅱ)若直線
與曲線
交于兩點
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時,求出函數f(x)的單調區間及最小值;
(2)若f(x)≥0恒成立,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com