【題目】在平面直角坐標系
中,圓
,以坐標原點
為極點,
軸正半軸為極軸,直線
的極坐標方程為
,直線
交圓
于
兩點,
為
中點.
(1)求點
軌跡的極坐標方程;
(2)若
,求
的值.
科目:高中數學 來源: 題型:
【題目】設
,函數![]()
(1)若
,求出函數
在區間上
的最大值.
(2)若
,求出函數
的單調區間(不必證明)
(3)若存在
,使得關于
方程
有三個不相等的實數根,求出實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C經過點
,且圓心
在直線
上,又直線
與圓C交于P,Q兩點.
(1)求圓C的方程;
(2)若
,求實數
的值;
(3)過點
作直線
,且
交圓C于M,N兩點,求四邊形
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,四邊形
為正方形,△
為等邊三角形,
是
中點,平面
與棱
交于點
.
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(III)記四棱錐
的體積為
,四棱錐
的體積為
,直接寫出
的值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在
,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
![]()
(1)經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為
,
的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在
內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著科學技術的飛速發展,網絡也已經逐漸融入了人們的日常生活,網購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優勢而深受廣大消費者認可.某網購公司統計了近五年在本公司網購的人數,得到如下的相關數據(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據表中的數據,求出y關于x的線性回歸方程,并預測到哪一年該公司的網購人數能超過300萬人;
(2)該公司為了吸引網購者,特別推出“玩網絡游戲,送免費購物券”活動,網購者可根據拋擲骰子的結果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網購者可獲得免費購物券200元. 已知骰子出現奇數與偶數的概率都是
,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數,遙控車向前移動一格(從
到
)若擲出偶數遙控車向前移動兩格(從
到
),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第
格的概率為
,試證明
是等比數列,并求網購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程
中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著通識教育理念的推廣及高校課程改革的深入,選修課越來越受到人們的重視.國內一些知名院校在公共選修課的設置方面做了許多有益的探索,并且取得了一定的成果.因為選修課的課程建設處于探索階段,選修課的教學、管理還存在很多的問題,所以需要在通識教育的基礎上制定科學的、可行的解決方案,為學校選修課程的改革與創新、課程設置、考試考核、人才培養提供參考.某高校采用分層抽樣法抽取了數學專業的50名參加選修課與不參加選修課的學生的成績,統計數據如下表:
成績優秀 | 成績不夠優秀 | 總計 | |
參加選修課 | 16 | 9 | 25 |
不參加選修課 | 8 | 17 | 25 |
總計 | 24 | 26 | 50 |
(1)試運用獨立性檢驗的思想方法你能否有99%的把握認為“學生的成績優秀與是否參加選修課有關”,并說明理由;
(2)如果從數學專業隨機抽取5名學生,求抽到參加選修課的學生人數
的分布列和數學期望(將頻率當做概率計算).
參考公式:
,其中
.
臨界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
,
(
).
(1)當
時,若函數
與
的圖象在
處有相同的切線,求
的值;
(2)當
時,若對任意
和任意
,總存在不相等的正實數
,使得
,求
的最小值;
(3)當
時,設函數
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com