【題目】定義在R上的偶函數f(x)滿足f(x+1)=
,且f(x)在[﹣3,﹣2]上是減函數,若α,β是銳角三角形的兩個內角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
【答案】C
【解析】解:∵f(x+1)=
,∴f(x+2)=f(x),f(x)是周期為2的周期函數. ∵y=f(x)是定義在R上的偶函數,∴f(﹣x)=f(x),∵f(x)在[﹣3,﹣2]上是減函數,
∴在[2,3]上是增函數,∴在[0,1]上是增函數,∵α,β是銳角三角形的兩個內角.
∴α+β>90°,α>90°﹣β,兩邊同取正弦得:sinα>sin(90°﹣β)=cosβ,
且sinα、cosβ都在區間[0,1]上,
∴f(sinα)>f(cosβ),
故選:C.
由條件f(x+1)=
得到f(x)是周期為2的周期函數,由f(x)是定義在R上的偶函數,在[﹣3,﹣2]上是減函數,得到f(x)在[2,3]上是增函數,在[0,1]上是增函數,再由α,β是銳角三角形的兩個內角,得到α>90°﹣β,且sinα、cosβ都在區間[0,1]上,從而得到f(sinα)>f(cosβ).
科目:高中數學 來源: 題型:
【題目】一組數據的平均數是2.8,方差是3.6,若將這組數據中的每一個數據都加上60,得到一組新數據,則所得新數據的平均數和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F. ![]()
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于( ) ![]()
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD⊥底面ABCD,M是AB的中點.![]()
(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,FD=3,求證:MN∥平面BEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動點P到直線l:x+2y﹣
=0距離的最小值;
(Ⅱ)設定點A(a,a),若點P,A之間的最短距離為2
,求滿足條件的實數a的取值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0,
)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“一帶一路”的建設中,中石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用.勘探初期數據資料下表:
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標 |
|
|
|
|
|
|
鉆探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散點圖中
號舊井位置大致分布在一條直線附近,借助前5組數據求得回歸線方程為
,求
,并估計
的預報值;
(2)現準備勘探新井
,若通過1、3、5、7號井計算出的
的值(
精確到0.01)相比于(1)中
的值之差(即:
)不超過10%,則使用位置最接近的已有舊井
,否則在新位置打井,請判斷可否使用舊井?(參考公式和計算結果:
)
(3)設出油量與鉆探深度的比值
不低于20的勘探井稱為優質井,在原有井號
的井中任意勘探3口井,求恰好2口是優質井的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
,
滿足|
|=
,|
|=1,且對任意實數x,不等式|
+x
|≥|
+
|恒成立,設
與
的夾角為θ,則tan2θ=( )
A.﹣ ![]()
B.![]()
C.﹣ ![]()
D.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com