【題目】在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
![]()
(1)若直線l過點A(4,0),且被圓C1截得的弦長為2
,求直線l的方程;
(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.
【答案】(1)y=0或7x+24y-28=0.(2)
或![]()
【解析】(1)設直線l的方程為y=k(x-4),即kx-y-4k=0.由垂徑定理,得圓心C1到直線l的距離d=
=1,結合點到直線距離公式,得
=1,化簡得24k2+7k=0,解得k=0或k=-
.
所求直線l的方程為y=0或y=-
(x-4),即y=0或7x+24y-28=0.
(2)設點P坐標為(m,n),直線l1、l2的方程分別為y-n=k(x-m),y-n=-
(x-m),即kx-y+n-km=0,-
x-y+n+
m=0.
因為直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,兩圓半徑相等.由垂徑定理,得圓心C1到直線l1與圓心C2到直線l2的距離相等.故有
,
化簡得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.
因為關于k的方程有無窮多解,所以有![]()
解得點P坐標為
或
.
科目:高中數學 來源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點
(點
在點
的左側).過點
任作一條直線與圓
:
相交于兩點A,B.問:是否存在實數a,使得
=
?若存在,求出實數a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間
與乘客等候人數
之間的關系,經過調查得到如下數據:
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這
組數據中選取
組數據求線性回歸方程,再用剩下的
組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數
,再求
與實際等候人數
的差,若差值的絕對值都不超過
,則稱所求方程是“恰當回歸方程”.
(1)從這
組數據中隨機選取2組數據,求選取的這
組數據的間隔時間不相鄰的概率;
(2)若選取的是后面
組數據,求
關于
的線性回歸方程
,并判斷此方程是否是“恰當回歸方程”;
附:對于一組數據
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:![]()
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
中,
是正三角形,四邊形ABCD是矩形,且平面
平面
.
(1)若點E是PC的中點,求證:
平面BDE;
(2)若點F在線段PA上,且
,當三棱錐
的體積為
時,求實數
的值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線
的焦點為F,斜率為正的直線l過點F交拋物線于A、B兩點,滿足
.
(1)求直線l的斜率;
(2)設點
在線段
上運動,原點
關于點
的對稱點為
,求四邊形
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型商場在2018年國慶舉辦了一次抽獎活動抽獎箱里放有3個紅球,3個黑球和1個白球
這些小球除顏色外大小形狀完全相同
,從中隨機一次性取3個小球,每位顧客每次抽完獎后將球放回抽獎箱活動另附說明如下:
凡購物滿
含
元者,憑購物打印憑條可獲得一次抽獎機會;
凡購物滿
含
元者,憑購物打印憑條可獲得兩次抽獎機會;
若取得的3個小球只有1種顏色,則該顧客中得一等獎,獎金是一個10元的紅包;
若取得的3個小球有3種顏色,則該顧客中得二等獎,獎金是一個5元的紅包;
若取得的3個小球只有2種顏色,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費數據
單位:元
,繪制得到如圖所示的莖葉圖.
![]()
求這20位顧客中獲得抽獎機會的顧客的購物消費數據的中位數與平均數
結果精確到整數部分
;
記一次抽獎獲得的紅包獎金數
單位:元
為X,求X的分布列及數學期望,并計算這20位顧客在抽獎中獲得紅包的總獎金數的平均值
假定每位獲得抽獎機會的顧客都會去抽獎
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com