【題目】下列說法:
①分類變量A與B的隨機變量K2越大,說明“A與B有關系”的可信度越大.
②以模型y=cekx去擬合一組數據時,為了求出回歸方程,設z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據具有線性相關關系的兩個變量的統計數據所得的回歸直線方程為y=a+bx中,b=1,
=1,
=3,
則a=1.正確的序號是 .
【答案】①②
【解析】解:對于①,分類變量A與B的隨機變量K2越大,說明“A與B有關系”的可信度越大,正確;
對于②,∵y=cekx,∴兩邊取對數,可得lny=ln(cekx)=lnc+lnekx=lnc+kx,
令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,k=0.3,∴c=e4.即②正確;
對于③,根據具有線性相關關系的兩個變量的統計數據所得的回歸直線方程為y=a+bx中,b=1,
=1,
=3,則a=2.故錯
故答案為:①②.
利用獨立性檢驗的性質可判斷①的真假性;由y=cekx,兩邊取對數,可得z=lnc+kx,比較z=0.3x+4可得k、c的值,進而可判斷②的真假性;利用回歸直線方程過樣本中心點可得a的值,進而可判斷③的真假性.
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N. ![]()
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數f(x),當x≥0時,
f(x)=
,
則關于x的函數F(x)=f(x)﹣a(0<a<1)的所有零點之和為( )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為奇函數,當x≥0時,f(x)=
.g(x)=
,
(1)求當x<0時,函數f(x)的解析式,并在給定直角坐標系內畫出f(x)在區間[﹣5,5]上的圖象;(不用列表描點) ![]()
(2)根據已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+3x2+1,若至少存在兩個實數m,使得f(﹣m),f(1)、f(m+2)成等差數列,則過坐標原點作曲線y=f(x)的切線可以作( )
A.3條
B.2條
C.1條
D.0條
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量問題,全民關注,有需求就有研究,某科研團隊根據工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達到18%以上,則認定霧炮除塵有效.![]()
(1)根據以上數據估計霧炮除塵有效的概率;
(2)現把A市規劃成三個區域,每個區域投放3臺霧炮進行除塵(霧炮之間工作互不影響),若在一個區域內的3臺霧炮降塵率都低于18%,則需對該區域后期追加投入20萬元繼續進行治理,求后期投入費用的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩猜數字游戲,先由甲心中任想一個數字記為
,再由乙猜甲剛才想的數字,把乙猜的數字記為
,且
、
.若
,則稱甲乙“心有靈犀”.現任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com