已知函數(shù)
(1)求函數(shù)
在
上的最大值和最小值.
(2)過點
作曲線
的切線,求此切線的方程.
(1)
,
(2)切線方程為
即
或
.
解析試題分析:(I)
,
當(dāng)
或
時,
,
為函數(shù)
的單調(diào)增區(qū)間
當(dāng)
時,
,
為函數(shù)
的單調(diào)減區(qū)間
又因為
,
所以當(dāng)
時,
當(dāng)
時,
(II)設(shè)切點為
,則所求切線方程為
由于切線過點
,
,
解得
或
所以切線方程為
即
或
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究曲線上某點切線方程.
點評:本題考查了利用導(dǎo)函數(shù)求區(qū)間上的最值問題,難度不大,關(guān)鍵是掌握導(dǎo)函數(shù)的定義.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
在實數(shù)集R上單調(diào)遞增,求
的范圍;
(Ⅱ)是否存在實數(shù)
使
在
上單調(diào)遞減.若存在求出
的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意
,不等式
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)若
在
處取得極值,求
的極大值;
(2)若在區(qū)間
上
的圖像在
圖像的上方(沒有公共點),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=1nx-a(x-l),a∈R
(I)討論f(x)的單調(diào)性;
(Ⅱ)若x≥1時,
石恒成立,求實數(shù)a的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,
為
的導(dǎo)函數(shù).
(Ⅰ)若
,求
的值;
(Ⅱ)若
圖象與
圖象關(guān)于直線
對稱,△ABC的三個內(nèi)角A、B、C所對的邊長分別為
,角A為
的初相,
,求△ABC面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com