【題目】設(shè)函數(shù)
.
(1)求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)
時(shí),
的最大值為2,求
的值,并求出
的對稱軸方程.
【答案】(1)
;(2)
,
的對稱軸方程為
.
【解析】試題分析:(1)求三角函數(shù)的最小正周期一般化成
,
,
形式,利用周期公式即可.(2)求解較復(fù)雜三角函數(shù)的單調(diào)區(qū)間時(shí),首先化成
形式,再
的單調(diào)區(qū)間,只需把
看作一個整體代入
相應(yīng)的單調(diào)區(qū)間,注意先把
化為正數(shù),這是容易出錯的地方. ,(3)(2)求解較復(fù)雜三角函數(shù)的最值時(shí),首先化成
形式,在求最大值或最小值,尋求角與角之間的關(guān)系,化非特殊角為特殊角;正確靈活運(yùn)用公式,通過三角變換消去或約去一些非特殊角的三角函數(shù)值,注意題中角的范圍;(4)求函數(shù)
或
的對稱軸方程時(shí),可以把
看做整體,代入
或
相應(yīng)的對稱軸即可
試題解析:(1)![]()
![]()
則
的最小正周期
,
且當(dāng)
時(shí)
單調(diào)遞增.
即
為
的單調(diào)遞增區(qū)間
(寫成開區(qū)間不扣分).
(2)當(dāng)
時(shí)
,當(dāng)
,即
時(shí)
.
所以
.
為
的對稱軸.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:![]()
(Ⅰ)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(Ⅱ)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β∈(
,π),且sinα+cosα=a,cos(β﹣α)=
.
(1)若a=
,求sinαcosα+tanα﹣
的值;
(2)若a=
,求sinβ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,且不等式ax2﹣3x+2>0的解集為(﹣∞,1)∪(b,+∞)
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{bn}滿足=
,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,P為第三象限內(nèi)一點(diǎn)且在圓C1上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x﹣9y﹣8=0與曲線C:y=x3﹣px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實(shí)數(shù)p的值為( )
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過
三點(diǎn).
(1)求橢圓
的方程;
(2)在直線
上任取一點(diǎn)
,連接
,分別與橢圓
交于
兩點(diǎn),判斷直線
是否過定點(diǎn)?若是,求出該定點(diǎn).若不是,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com