【題目】在平面直角坐標系中,點(a,5)關于原點對稱的點的坐標是(1,b+1),則點(a,b)在第象限.
科目:初中數學 來源: 題型:
【題目】某班“數學興趣小組”對函數y=x2﹣2|x|的圖象和性質進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數,x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | 3 |
| m | ﹣1 | 0 | ﹣1 | 0 |
| 3 | … |
其中,m= .
(2)根據表中數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該函數圖象的另一部分.
(3)觀察函數圖象,寫出兩條函數的性質.
(4)進一步探究函數圖象發現:
①函數圖象與x軸有 個交點,所以對應的方程x2﹣2|x|=0有 個實數根;
②方程x2﹣2|x|=2有 個實數根.
![]()
③關于x的方程x2﹣2|x|=a有4個實數根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AB=4,BC=6,P是AD的中點,N是BC延長線上一點,連結PN,過點P作PN的垂線,交AB于點E,交CD的延長線于點F,連結EN,FN,設CN=x,AE=y.![]()
(1)求證:PE=PF;
(2)當0<x<
時,求y關于x的函數表達式;
(3)若將“矩形ABCD”變為“菱形ABCD”,如圖(2),AB=BC=4,∠B=60°,當0<x<3時,其它條件不變,求此時y關于x的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設A港和B港相距x千米.根據題意,可列出的方程是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變為原來的n倍,得△AB′C′ ,如圖①所示,∠BAB′ =θ,
,我們將這種變換記為[θ,n] .
(1)如圖①,對△ABC作變換[60°,
]得到△AB′C′ ,則
:
= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、
在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com