【題目】如圖1,四邊形
是矩形,點
的坐標為
,點
的坐標為
.點
從點
出發,沿
以每秒1個單位長度的速度向點
運動,同時點
從點
出發,沿
以每秒2個單位長度的速度向點
運動,當點
與點
重合時運動停止.設運動時間為
秒.
![]()
(1)當
時,線段
的中點坐標為________;
(2)當
與
相似時,求
的值;
(3)當
時,拋物線
經過
、
兩點,與
軸交于點
,拋物線的頂點為
,如圖2所示.問該拋物線上是否存在點
,使
,若存在,求出所有滿足條件的
點坐標;若不存在,說明理由.
【答案】(1)
的中點坐標是
;(2)
或
;(3)
,
.
【解析】(1)先根據時間t=2,和速度可得動點P和Q的路程OP和AQ的長,再根據中點坐標公式可得結論;
(2)根據矩形的性質得:∠B=∠PAQ=90°,所以當△CBQ與△PAQ相似時,存在兩種情況:
①當△PAQ∽△QBC時,
,②當△PAQ∽△CBQ時,
,分別列方程可得t的值;
(3)根據t=1求拋物線的解析式,根據Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點D,證明△KEQ∽△QMH,列比例式可得點D的坐標,同理根據對稱可得另一個點D.
(1)如圖1,∵點A的坐標為(3,0),
∴OA=3,
當t=2時,OP=t=2,AQ=2t=4,
∴P(2,0),Q(3,4),
∴線段PQ的中點坐標為:(
,
),即(
,2);
故答案為:(
,2);
(2)如圖1,∵四邊形OABC是矩形,
∴∠B=∠PAQ=90°
∴當△CBQ與△PAQ相似時,存在兩種情況:
①當△PAQ∽△QBC時,
,
∴
,
4t2-15t+9=0,
(t-3)(t-
)=0,
t1=3(舍),t2=
,
②當△PAQ∽△CBQ時,
,
∴
,
t2-9t+9=0,
t=
,
∵0≤t≤6,
>7,
∴x=
不符合題意,舍去,
綜上所述,當△CBQ與△PAQ相似時,t的值是
或
;
(3)當t=1時,P(1,0),Q(3,2),
把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:
,解得:
,
∴拋物線:y=x2-3x+2=(x-
)2-
,
∴頂點k(
,-
),
∵Q(3,2),M(0,2),
∴MQ∥x軸,
作拋物線對稱軸,交MQ于E,
∴KM=KQ,KE⊥MQ,
∴∠MKE=∠QKE=
∠MKQ,
如圖2,∠MQD=
∠MKQ=∠QKE,設DQ交y軸于H,
![]()
∵∠HMQ=∠QEK=90°,
∴△KEQ∽△QMH,
∴
,
∴
,
∴MH=2,
∴H(0,4),
易得HQ的解析式為:y=-
x+4,
則
,
x2-3x+2=-
x+4,
解得:x1=3(舍),x2=-
,
∴D(-
,
);
同理,在M的下方,y軸上存在點H,如圖3,使∠HQM=
∠MKQ=∠QKE,
![]()
由對稱性得:H(0,0),
易得OQ的解析式:y=
x,
則
,
x2-3x+2=
x,
解得:x1=3(舍),x2=
,
∴D(
,
);
綜上所述,點D的坐標為:D(-
,
)或(
,
).
科目:初中數學 來源: 題型:
【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )
![]()
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=--
x+8與x軸,y軸分別交于點A,點B,點D在y軸的負半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求AB的長和點C的坐標;
(2)求直線CD的表達式.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點坐標.
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當△PMN面積最大時,求P點坐標,并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時x的取值范圍;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】材料一:我們可以將任意三位數記為
,(其中
、
、
分別表示該數的百位數字,十位數字和個位數字,且
),顯然
.
材料二:若一個三位數的百位數字,十位數字和個位數字均不為0,則稱之為初始數,比如123就是一個初始數,將初始數的三個數位上的數字交換順序,可產生出5個新的初始數,比如由123可以產生出132,213,231,312,321這5個新初始數,這6個初始數的和成為終止數.
(1)求初始數125生成的終止數;
(2)若一個初始數
,滿足
,且
,記
,
,
,若
,求滿足條件的初始數的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,圖形ABCD是由兩個二次函數y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).
![]()
(1)直接寫出這兩個二次函數的表達式;
(2)判斷圖形ABCD是否存在內接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;
(3)如圖2,連接BC,CD,AD,在坐標平面內,求使得△BDC與△ADE相似(其中點C與點E是對應頂點)的點E的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應,對農民實施精準扶貧.某農戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調研發現,花椒市場價60元/千克,黑木耳市場價48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據脫貧目標任務要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com