【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖.
![]()
(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是________.
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構拼圖是軸對稱圖形的概率________.
②黑色方塊所構拼圖是中心對稱圖形的概率是________.
【答案】(1)
;(2)①
;②
.
【解析】
(1)由乙固定在E處,移動甲后黑色方塊構成的拼圖一共有3種可能,其中有兩種情形是軸對稱圖形,所以若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是
;(2)①由樹狀圖得到黑色方塊所構拼圖是軸對稱圖形的概率;②黑色方塊所構拼圖中是中心對稱圖形有兩種情形,①甲在B處,乙在F處,②甲在C處,乙在E處,所以黑色方塊所構拼圖是中心對稱圖形的概率是
.
(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖一共有3種可能,其中有兩種情形是軸對稱圖形,所以若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是
.
故答案為
.(2)①由樹狀圖可知,黑色方塊所構拼圖是軸對稱圖形的概率=
.
![]()
②黑色方塊所構拼圖中是中心對稱圖形有兩種情形,
甲在B處,乙在F處或甲在C處,乙在E處,
所以黑色方塊所構拼圖是中心對稱圖形的概率是
.
故答案為
.
科目:初中數學 來源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點C在OM上,OC=5,且點C到OA的距離為3.過點C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點C旋轉,當CD與OA不垂直時(如圖2),上述結論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點C旋轉,當CD與OA的反向延長線相交于點D時:
①請在圖3中畫出圖形;
②上述結論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數量關系,不需證明.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△PQN中,若∠P=
∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請寫出所有的“差角”并說明理由;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,E為AC的中點,AD平分∠BAC,BA:CA=2:3,AD與BE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( )
![]()
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
![]()
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線
與
軸交于
,
兩點(點
在
軸的正半軸上),與
軸交于點
,矩形
的一條邊
在線段
上,頂點
,
分別在線段
,
上.
![]()
求點
,
,
的坐標;
若點
的坐標為
,矩形
的面積為
,求
關于
的函數表達式,并指出
的取值范圍;
當矩形
的面積
取最大值時,
①求直線
的解析式;
②在射線
上取一點
,使
,若點
恰好落在該拋物線上,則
________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖a,網格中的每一個正方形的邊長為1,△ABC為格點三角形,直線MN為格點直線(點A、B、C、M、N在小正方形的頂點上).
![]()
(1)僅用直尺在圖a中作出△ABC關于直線MN的對稱圖形△A′B′C′.
(2)如圖b,僅用直尺將網格中的格點三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.
![]()
(3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡單說明你的理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在直角坐標系內的位置如圖所示.
(1)分別寫出A、B、C的坐標;
(2)請在這個坐標系內畫出△A1B1C1,使△A1B1C1與△ABC關于y軸對稱,并寫出B1的坐標;
(3)請在這個坐標系內畫出△A2B2C2,使△A2B2C2與△ABC關于原點對稱,并寫出A2的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD對折后再展開,得到折痕EF,M是BC上一點,沿著AM再次折疊紙片,使得點B恰好落在折痕EF上的點B′處,連接AB′、BB′.
![]()
判斷△AB′B的形狀為 ;
若P為線段EF上一動點,當PB+PM最小時,請描述點P的位置為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com