【題目】如圖(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分別為 A、B,AC=5cm.點P 在線段 AB 上以 2cm/s 的速度由點 A 向點B 運動,同時,點 Q 在射線 BD 上運動.它們運 動的時間為 t(s)(當點 P 運動結束時,點 Q 運動隨之結束).
![]()
(1)若點 Q 的運動速度與點 P 的運動速度相等,當 t=1 時,△ACP 與△BPQ 是否全等, 并判斷此時線段 PC 和線段 PQ 的位置關系,請分別說明理由;
(2)如圖(2),若“AC⊥AB,BD⊥AB” 改為 “∠CAB=∠DBA=60°”,點 Q 的運動速 度為 x cm/s,其他條件不變,當點 P、Q 運動到某處時,有△ACP 與△BPQ 全等,求出相應的 x、t 的值.
【答案】(1)△ACP≌△BPQ,PC⊥PQ,理由見解析;(2)t=1s,x=2cm/s或t=
s,x=
cm/s.
【解析】
(1)利用SAS證得△ACP≌△BPQ,得出∠ACP=∠BPQ,即可得出∠APC+∠BPQ=∠APC+∠ACP=90°,即可得出結論;
(2)由△ACP≌△BPQ,分兩種情況:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程組求得答案即可.
解:(1)△ACP≌△BPQ,PC⊥PQ,
理由如下:當t=1時,AP=BQ=2,
則BP=7-2=5,
∴BP=AC,
∵AC⊥AB,BD⊥AB
∴∠A=∠B=90°
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ;
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即PC⊥PQ;
(2)①若△ACP≌△BPQ,
則AC=BP,AP=BQ,可得:5=7-2t,2t=xt
解得:x=2,t=1;
②若△ACP≌△BQP,
則AC=BQ,AP=BP,可得:5=xt,2t=7-2t
解得:t=
, x=5÷
=
,
故當t=1s,x=2cm/s或t=
s,x=
cm/s時,△ACP與△BPQ全等.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發,以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在∠ABC的角平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP為等腰三角形(直接寫出結果)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線
相交于A(1,
),B(4,0)兩點.
![]()
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出
的值,并求出此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形
為菱形,點
為對角線
上的一個動點,連接
并延長交射線
于點
,連接
.
求證:
;
是否存在這樣一個菱形,當
時,剛好
?若存在,求出
的度數;若不存在,請說明理由;
若
,且當
為等腰三角形時,求
的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC 中,∠A=90°,現要在 AC 邊上確定一點 D,使點 D到 BA、BC 的距離相等.
![]()
(1)請你按照要求,在圖上確定出點 D 的位置(尺規作圖,不寫作法,保留作圖痕跡);
(2)若 BC=10,AB=8,則 AC= ,AD= (直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《中華人民共和國道路交通管理條例》規定:小汽車在城街路上行駛速度不得超過70 km/h,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面車速檢測儀 A的正前方60 m處的C點,過了5 s后,測得小汽車所在的B點與車速檢測儀A之間的距離為100 m.
(1)求B,C間的距離.
(2)這輛小汽車超速了嗎?請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx+b(k≠0)的圖象經過點A(2,-6),且與反比例函數y=-
的圖象交于點B(a,4)
(1)求一次函數的解析式;
(2)將直線AB向上平移10個單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數y2=
的圖象相交,求使y1<y2成立的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為10的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合).
![]()
(Ⅰ)如圖1,若點Q是BC邊上一動點,與點P同時以相同的速度由C向B運動(與C、B不重合).求證:BP=AQ;
(Ⅱ)如圖2,若Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D,在運動過程中線段ED的長是否發生變化?如果不變,求出線段ED的長;如果發生改變,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一種折疊式可調節的魚竿支架的示意圖,AE是地插,用來將支架固定在地面上,支架AB可繞A點前后轉動,用來調節AB與地面的夾角,支架CD可繞AB上定點C前后轉動,用來調節CD與AB的夾角,支架CD帶有伸縮調節長度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚竿DB垂直,釣魚竿DB與地面AF平行,則支架CD的長度為 cm(精確到0.1cm);(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調節支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚竿DB與地面AF仍然保持平行,則支架CD的長度應該調節為多少?(結果保留根號)
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com