①
BE=12 (1分)
AB=16
②∠1=

(用△
BOC與△
DOC全等 得出∠1=∠2)
∠4=

∴∠1=∠4 ∴
OC∥
DE (6分)
③利用△
AOD∽△
ACB
OD=6 (9分)
AE=16-6×2=4 (10分)
④

(12分)
(1)根據切線長定理得到BC=CD=12;在Rt△ABC中,根據勾股定理可計算出AB;
(2)⊙O與AB相交于點B,與AC相切于點D,根據切線的性質得到OB⊥BC,OD⊥AC,易證得Rt△OBC≌Rt△ODC,則∠BOC=∠DOC,再利用三角形外角性質得到∠BOD=∠ODE+∠OED,而∠ODE=∠OED,則∠OBC=∠OED,根據平行線的判定即可得到結論;
(3)易證Rt△AOD∽Rt△ACB,則OD:BC=AD:AB,即OD:8=12:16,可得到OD=6,即可得到OB,由AE=AB-2OB可計算出AE的長;
(4)在Rt△OBC中利用勾股定理即可計算出OC的長.