題目列表(包括答案和解析)
(本題滿分10分)
已知四棱錐
的底面為直角梯形,
//
,
,
底面
,且
.
(Ⅰ)證明:
平面
;
(Ⅱ)求二面角
的余弦值的大小.
![]()
(本題滿分10分)
已知四棱錐
的底面為直角梯形,
//
,
,
底面
,且
.
(Ⅰ)證明:
平面
;
(Ⅱ)求二面角
的余弦值的大小.![]()
(本小題滿分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F(xiàn)分別是線段A1A,BC上的點.
(1) 若A1E=5,BF=10,求證:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱錐A1AB1F的體積.![]()
(本小題滿分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分別是線段A1A,BC上的點.
(1) 若A1E=5,BF=10,求證:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱錐A1AB1F的體積.
![]()
第Ⅰ卷
一、填空題:
1. {1,2,3}; 2.充分非必要;3.
; 4.
; 5. 8; 6. (歷史) 5049; (物理)
; 7. 1; 8.2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image222.gif)
9.
;10.
; 11.
; 12.
;13.2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image232.gif)
;14. 4.
二、解答題:
15. 解:(1)因為
,所以
…………(3分)
得
(用輔助角得到
同樣給分) ………(5分)
又
,所以
=
……………………………………(7分)
(2)因為
………………………(9分)
=
…………………………………………(11分)
所以當(dāng)
=
時,
的最大值為5+4=9 …………………(13分)
故
的最大值為3 ………………………………………(14分)
16. (選歷史方向) 解: (1)表格為:
高 個
非高個
合 計
大 腳
5
2
7
非大腳
1
13
合 計
6
14
…… (3分)
(說明:黑框內(nèi)的三個數(shù)據(jù)每個1分,黑框外合計數(shù)據(jù)有錯誤的暫不扣分)
(2)提出假設(shè)H0: 人的腳的大小與身高之間沒有關(guān)系. …………………………… (4分)
根據(jù)上述列聯(lián)表可以求得
.…………………… (7分)
當(dāng)H0成立時,
的概率約為0.005,而這里8.802>7.879,
所以我們有99.5%的把握認(rèn)為: 人的腳的大小與身高之間有關(guān)系. ……………… (8分)
(3)
①抽到12號的概率為
………………………………… (11分)
②抽到“無效序號(超過20號)”的概率為
…………………… (14分)
(選物理方向) 解:(Ⅰ)在給定的直角坐標(biāo)系下,設(shè)最高點為A,入水點為B,
拋物線的解析式為
. …………………………… 2′
由題意,知O(0,0),B(2,-10),且頂點A的縱坐標(biāo)為
.…………… 4′
或
……………………………
8′
∵拋物線對稱軸在y軸右側(cè),∴
,又∵拋物線開口向下,∴a<0,
從而b>0,故有
……………………………9′
∴拋物線的解析式為
. ……………………………10′
(Ⅱ)當(dāng)運動員在空中距池邊的水平距離為
米時,
即
時,
, ……………………………12′
∴此時運動員距水面的高為10-
=
<5,因此,此次跳水會失誤.………………14′
17. (1)證明:由直四棱柱,得
,
所以
是平行四邊形,所以
…………………(3分)
而
,
,所以
面
………(4分)
(2)證明:因為
, 所以
……(6分)
又因為
,且
,所以
………
……(8分)
而
,所以
…………………………(9分)
(3)當(dāng)點
為棱
的中點時,平面2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image145.gif)
平面
…………………(10分)
取DC的中點N,
,連結(jié)
交
于
,連結(jié)
.
因為N是DC中點,BD=BC,所以
;又因為DC是面ABCD與面
的交線,而面ABCD⊥面
,
所以
……………(12分)
又可證得,
是
的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M
平面
,
因為OM?面DMC1,所以平面2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image145.gif)
平面
………………………(14分)
18. 解:(1)因為
,所以c=1……………………(2分)
則b=1,即橢圓
的標(biāo)準(zhǔn)方程為
…………………………(4分)
(2)因為
(1,1),所以
,所以
,所以直線OQ的方程為y=-2x(6分)
又橢圓的左準(zhǔn)線方程為x=-2,所以點Q(-2,4) …………………………(7分)
所以
,又
,所以
,即
,
故直線
與圓
相切……………………………………………………(9分)
(3)當(dāng)點
在圓
上運動時,直線
與圓
保持相切 ………(10分)
證明:設(shè)
(
),則
,所以
,
,
所以直線OQ的方程為
……………(12分)
所以點Q(-2,
) ………………
(13分)
所以
,
又
,所以
,即
,故直線
始終與圓
相切……(15分)
19.⑴解:函數(shù)的定義域為
,
(
)…… (2分)
若
,則
,
有單調(diào)遞增區(qū)間
. ……………… (3分)
若
,令
,得
,
當(dāng)
時,
,
當(dāng)
時,
. ……………… (5分)
有單調(diào)遞減區(qū)間
,單調(diào)遞增區(qū)間
. ……………… (6分)
⑵解:(i)若
,
在
上單調(diào)遞增,所以
. ……… (7分)
若
,
在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
. ………………
(9分)
若
,
在
上單調(diào)遞減,所以
.………… (10分)
綜上所述,
……………… (12分)
(ii)令
.若
,無解. ………………
(13分)
若
,解得
. ……………… (14分)
若
,解得
. ………………
(15分)
故
的取值范圍為
. ……………… (16分)
20. (1)數(shù)表中第
行的數(shù)依次所組成數(shù)列的通項為
,則由題意可得
… (2分)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image438.gif)
(其中
為第
行數(shù)所組成的數(shù)列的公差)
(4分)
(2)2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image446.gif)
第一行的數(shù)依次成等差數(shù)列,由(1)知,第2行的數(shù)也依次成等差數(shù)列,依次類推,可知數(shù)表中任一行的數(shù)(不少于3個)都依次成等差數(shù)列. ……………… (5分)
設(shè)第
行的數(shù)公差為
,則
,則
…………… (6分)
所以2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image457.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image459.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image461.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image463.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image465.gif)
(10 分)
(3)由
,可得2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image471.gif)
所以2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image473.gif)
=
……………… (11分)
令
,則
,所以 2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image483.gif)
………… (13分)
要使得
,即
,只要
=
,
,
,所以只要
,
即只要
,所以可以令2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image503.gif)
則當(dāng)
時,都有
.
所以適合題設(shè)的一個函數(shù)為
(16分)
第Ⅱ卷(附加題 共40分)
1. (1)設(shè)動點P的坐標(biāo)為
,M的坐標(biāo)為
,
則
即為所求的軌跡方程. …………(6分)
(2)由(1)知P的軌跡是以(
)為圓心,半徑為
的圓,易得RP的最小值為1
.……(10分)
2.
,|x-a|<l,
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image522.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image524.gif)
,
…………………………………………………5分
=2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image528.gif)
………………………10分
3. 證明:以
為坐標(biāo)原點
長為單位長度,如圖建立空間直角坐標(biāo)系,則各點坐標(biāo)為
.
(1)解:因2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image540.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image542.gif)
所以,
與
所成的角余弦值為
…………………………………5分
(2)解:在
上取一點
,則存在
使2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image552.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image554.gif)
要使2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image556.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image558.gif)
為
所求二面角
的平面角.
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image564.gif)
…………………………………10分
另解:可以計算兩個平面的法向量分別為:平面AMC的法向量
,平面BMC的法向量為
,
=
, 所求二面角
的余弦值為-
.
4. (1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知
………………………………4分
(2)ξ可取1,2,3,4.
,
;………………8分
故ξ的分布列為
ξ
1
2
3
4
P
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image583.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image585.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image587.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image589.gif)
2008~2009學(xué)年度第二學(xué)期周周練高三數(shù)學(xué)試題.files/image591.gif)
答:ξ的數(shù)學(xué)期望為
………………………………10分
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com