題目列表(包括答案和解析)
(本小題滿分12分.其中(Ⅰ)小問6分,(Ⅱ)小問6分)
已知
,數(shù)列{an}滿足:
,
.
(Ⅰ)求證:![]()
;
(Ⅱ)判斷an與an+1
的大小,并說明理由.
(本小題滿分12分.其中(Ⅰ)小問6分,(Ⅱ)小問6分)
如圖,已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E、F分別為棱BC、AD的中點.
(Ⅰ)若PD=1,求異面直線PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值為
,求四棱錐P-ABCD的體積
![]()
(本小題滿分12分)
道路交通安全法中將飲酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛?cè)藛T血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當20≤Q<80時,為酒后駕車;當Q≥80時,為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了200輛機動車駕駛員的血酒含量,其中查處酒后駕車的有6人,查處醉酒駕車的有2人,依據(jù)上述材料回答下列問題:
(Ⅰ)分別寫出違法駕車發(fā)生的頻率和醉酒駕車占違法駕車總數(shù)的百分數(shù);
(Ⅱ)從違法駕車的8人中抽取2人,求取到醉酒駕車人數(shù)的分布列和期望。
(Ⅲ)飲酒后違法駕駛機動車極
易發(fā)生交通事故,假設(shè)酒后駕車和醉酒駕車發(fā)生交通事故的概率分別是0.1和0.25,且每位駕駛員是否發(fā)生交通事故是相互獨立的。依此計算被查處的8名駕駛員中至少有一人發(fā)生交通事故的概率(列式)。
(本小題滿分12分)
有編號為
,
,…
的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
![]()
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號為
.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分12分)
有編號為
,
,…
的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
![]()
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號為
.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
一、DDBCD CABCA
二、11.1;
12.
; 13.
14.
; 15.
;
16.學理.files/image262.gif)
三.解答題(本大題共6小題,共76分)
17.解:(1)法一:由題可得
;
法二:由題
,
故
,從而
;
法三:由題
,解得
,
故
,從而
。
(2)
,令
,
則
,
在
單調(diào)遞減,
故學理.files/image286.gif)
,
從而
的值域為
。
18.解:(1)
的可能取值為0,1,2,3,4,
,
學理.files/image295.gif)
,
,
,學理.files/image303.gif)
。
因此隨機變量
的分布列為下表所示;
學理.files/image126.gif)
0
1
2
3
4
學理.files/image142.gif)
學理.files/image308.gif)
學理.files/image297.gif)
學理.files/image310.gif)
學理.files/image312.gif)
學理.files/image314.gif)
(2)由⑴得:
,
學理.files/image318.gif)
19.法一:(1)連接
,設(shè)
,則
。
因為
,所以
,故
,從而
,
故
。
又因為
,
所以
,當且僅當
取等號。
此時
為
邊的中點,
為
邊的中點。
故當
為
邊的中點時,
的長度最小,其值為學理.files/image346.gif)
(2)連接
,因為此時
分別為
的中點,
故
,所以
均為直角三角形,
從而
,所以
即為直線
與平面
所成的角。
因為
,所以
即為所求;
(3)因
,又
,所以
。
又
,故三棱錐
的表面積為
。
因為三棱錐
的體積
,
所以
。
法二:(1)因
,故
。
設(shè)
,則
。
所以
,
當且僅當
取等號。此時
為
邊的中點。
故當
為
的中點時,
的長度最小,其值為
;
(2)因
,又
,所以
。
記
點到平面
的距離為
,
因
,故
,解得
。
因
,故
;
(3)同“法一”。
法三:(1)如圖,以
為原點建立空間直角坐標系,設(shè)
,則
,
所以
,當且僅當
取等號。
此時
為
邊的中點,
為
邊的中點。
故當
為
邊的中點時,
的長度最小,其值為
;
(2)設(shè)
為面
的法向量,因
,
故
。取
,得
。
又因
,故
。
因此
,從而
,
所以
;
(3)由題意可設(shè)
為三棱錐
的內(nèi)切球球心,
則
,可得
。
與(2)同法可得平面
的一個法向量
,
又
,故
,
解得
。顯然
,故
。
20.解:(1)當
時,
。令
得
,
故當
時
,
單調(diào)遞增;
當
時
,
單調(diào)遞減。
所以函數(shù)
的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為
;
(2)法一:因
,故
。
令
,
要使
對滿足
的一切
成立,則
,
解得
;
法二:
,故
。
由
可解得
。
因為
在
單調(diào)遞減,因此
在
單調(diào)遞增,故
。設(shè)
,
則
,因為
,
所以
,從而
在
單調(diào)遞減,
故
。因此
,即
。
(3)因為
,所以學理.files/image498.gif)
即
對一切
恒成立。
,令
,
則
。因為
,所以
,
故
在
單調(diào)遞增,有
。
因此
,從而
。
所以
。
21.解:(1)設(shè)
,則由題
,
由
得
,故
。
又根據(jù)
可得
,
即
,代入可得
,
解得
(舍負)。故
的方程為
;
(2)法一:設(shè)
,代入
得
,
故
,
從而學理.files/image551.gif)
學理.files/image553.gif)
學理.files/image555.gif)
因此
。
法二:顯然點
是拋物線
的焦點,點
是其準線
上一點。
設(shè)
為
的中點,過
分別作
的垂線,垂足分別為
,
則
。
因此以
為直徑的圓與準線
相切(于點
)。
若
與
重合,則
。否則點
在
外,因此
。
綜上知
。
22.證明:(1)因
,故
。
顯然
,因此數(shù)列
是以
為首項,以2為公比的等比數(shù)列;
(2)由⑴知
,解得
;
(3)因為
學理.files/image590.gif)
所以
。
又學理.files/image594.gif)
(當且僅當
時取等號),
故
。
綜上可得
。(亦可用數(shù)學歸納法)
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com