【題目】下列命題中是真命題的個數是( )
(1)垂直于同一條直線的兩條直線互相平行
(2)與同一個平面夾角相等的兩條直線互相平行
(3)平行于同一個平面的兩條直線互相平行
(4)兩條直線能確定一個平面
(5)垂直于同一個平面的兩個平面平行
A.
B.
C.
D. ![]()
科目:高中數學 來源: 題型:
【題目】設函數f(x)是定義在R上的偶函數,且對任意的x∈R,都有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=2x﹣1 , 有以下結論:
①2是函數f(x)的一個周期;
②函數f(x)在(1,2)上單調遞減,在(2,3)上單調遞增;
③函數f(x)的最大值為1,最小值為0;
④當x∈(3,4)時,f(x)=23﹣x .
其中,正確結論的序號是 . (請寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣klnx,(常數k>0).
(1)試確定函數f(x)的單調區間;
(2)若對于任意x≥1,f(x)>0恒成立,試確定實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<
)的部分圖象如圖所示,下列說法正確的是( ) ![]()
A.函數f(x)的最小正周期為2π
B.函數f(x)的圖象關于點(﹣
,0)對稱
C.將函數f(x)的圖象向左平移
個單位得到的函數圖象關于y軸對稱
D.函數f(x)的單調遞增區間是[kπ+
,kπ+
](K∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , a1=1,an=
+2(n﹣1)(n∈N*).
(1)求證:數列{an}為等差數列,并分別寫出an和Sn關于n的表達式;
(2)設數列
的前n項和為Tn , 證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+
x2+2x﹣6,g(x)在[1,4]上的最大值為b,當x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對正整數n,有拋物線y2=2(2n﹣1)x,過P(2n,0)任作直線l交拋物線于An , Bn兩點,設數列{an}中,a1=﹣4,且an=
(其中n>1,n∈N),則數列{an}的前n項和Tn=( )
A.4n
B.﹣4n
C.2n(n+1)
D.﹣2n(n+1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com