【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過38
的病人特設(shè)發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差
(
)與就診人數(shù)
的資料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
晝夜溫差 | 8 | 10 | 13 | 12 | 7 |
就診人數(shù) | 18 | 25 | 28 | 27 | 17 |
(1)求![]()
的相關(guān)系數(shù)
,并說明晝夜溫差(
)與就診人數(shù)
具有很強(qiáng)的線性相關(guān)關(guān)系.
(2)求就診人數(shù)
(人)關(guān)于出晝夜溫差
(
)的線性回歸方程,預(yù)測(cè)晝夜溫差為9
時(shí)的就診人數(shù).
附:樣本![]()
的相關(guān)系數(shù)為
,當(dāng)
時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系.
回歸直線方程為
,其中
,
.
參考數(shù)據(jù):
,![]()
【答案】(1)
,有很強(qiáng)的線性相關(guān)關(guān)系;(2)可以預(yù)測(cè)晝夜溫差為
時(shí)的就診人數(shù)大約為21人左右.
【解析】
(1)根據(jù)已知數(shù)據(jù),先求出
,然后根據(jù)相關(guān)系數(shù)公式求出
與
比較,即可得出結(jié)果;
(2)根據(jù)公式分別求出
,
,即可求出診人數(shù)
(人)關(guān)于出晝夜溫差
(
)的線性回歸方程,再將
代入,可求出
,從而可預(yù)測(cè)晝夜溫差為9
時(shí)的就診人數(shù).
(1)
,
,
,
,晝夜溫差
(
)與就診人數(shù)
具有很強(qiáng)的線性相關(guān)關(guān)系.
(2)因?yàn)?/span>
,
,
所以
,
,所以
,
當(dāng)
時(shí),
,
由此可以預(yù)測(cè)晝夜溫差為
時(shí)的就診人數(shù)大約為21人左右.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小、形狀相同的2個(gè)白球和10個(gè)黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補(bǔ)一個(gè)白球放到袋中.在重復(fù)
次這樣的操作后,記袋中的白球個(gè)數(shù)為
.
(1)求
;
(2)設(shè)
,求
;
(3)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點(diǎn)A是BD的中點(diǎn),AC、BD相交于點(diǎn)E,AB、PE相交于點(diǎn)F,直線CF交⊙O于另一點(diǎn)G、交PA于點(diǎn)K.
![]()
證明:(1)K是PA的中點(diǎn);(2)
..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在這5年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有1年多于2萬元的概率;
(2)求
關(guān)于
的線性回歸方程.若該設(shè)備的價(jià)格是每臺(tái)16萬元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?請(qǐng)說明理由.
參考公式:用最小二乘法求線性回歸方程
的系數(shù)公式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形
中,
,
,
分別為
,
的中點(diǎn),
,
為
中點(diǎn)現(xiàn)將四邊形
沿
折起,使平面
平面
,得到如圖②所示的多面體在圖②中,
![]()
(1)證明:
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)在商場(chǎng)收集了
位顧客購(gòu)物的相關(guān)數(shù)據(jù)如下表:
一次購(gòu)物款(單位:元) |
|
|
|
|
|
顧客人數(shù) |
|
|
|
|
|
統(tǒng)計(jì)結(jié)果顯示
位顧客中購(gòu)物款不低于
元的顧客占
,該商場(chǎng)每日大約有
名顧客,為了增加商場(chǎng)銷售額度,對(duì)一次購(gòu)物不低于
元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定
,
的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有
人前去該商場(chǎng)購(gòu)物,求獲得紀(jì)念品的數(shù)量
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E為PB的中點(diǎn).
![]()
(1)求證:AE//平面PDC;
(2)若BC=CD=PD,求直線AC與平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線
,直線
:
(
為參數(shù)).
(I)寫出曲線
的參數(shù)方程,直線
的普通方程;
(II)過曲線
上任意一點(diǎn)
作與
夾角為
的直線,交
于點(diǎn)
,
的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富教職工生活,五一節(jié)舉辦教職工趣味投籃比賽,有
兩個(gè)定點(diǎn)投籃位置,在
點(diǎn)投中一球得2分,在
點(diǎn)投中一球得3分.規(guī)則是:每人投籃三次按先
再
再
的順序各投籃一次,教師甲在
和
點(diǎn)投中的概率分別是
和
,且在
兩點(diǎn)投中與否相互獨(dú)立.
(1)若教師甲投籃三次,求教師甲投籃得分
的分布列;
(2)若教師乙與教師甲在
點(diǎn)投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com