【題目】以直角坐標系的原點為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位,已知直線l的參數方程為
(t為參數),圓C的極坐標方程為![]()
(1)求直線l和圓C的直角坐標方程;
(2)若點
在圓C上,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設
,
是兩條不同的直線,
,
,
是三個不同的平面,給出下列四個命題:
①若
,
,則
,
為異面直線; ②若
,
,
,則
;
③若
,
,則
; ④若
,
,
,則
.
則上述命題中真命題的序號為( )
A.①②B.③④C.②D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
:
經過橢圓
:
的左右焦點
,且與橢圓
在第一象限的交點為
,且
三點共線,直線
交橢圓
于
,
兩點,且
(
).
(1)求橢圓
的方程;
(2)當三角形
的面積取得最大值時,求直線
的方程.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為
,求二面角E-AD-C的余弦值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標的概率是
,甲、丙二人都沒有擊中目標的概率是
,乙、丙二人都擊中目標的概率是
.甲乙丙是否擊中目標相互獨立.
(1)求乙、丙二人各自擊中目標的概率;
(2)設乙、丙二人中擊中目標的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在所有棱長都相等的三棱錐
中,D,E,F分別是AB,BC,CA的中點,下列四個命題:
(1)
平面PDF;(2)
平面
;
(3)平面
平面
;(4)平面
平面
.
其中正確命題的序號為________.
A.(2)(3)B.(1)(3)C.(2)(4)D.(1)(4)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com