【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當n≥6時,求證:
a2+2A
a3+…+22n﹣2
a2n<49n﹣2 .
【答案】
(1)解:令x=0,則a0=1.
令x=1,則a0+a1+a2+…+a2n=3n,∴a1+a2+…+a2n=3n﹣1.
∵(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n.
∴兩邊對x求導可得:n(1+x+x2)n﹣1=a1+2a2x+…+2na2nx2n﹣1.
令x=0,則n=a1,
由(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n.
令x=2,則
×7n=
+
+a2+2a3+…+22n﹣2a2n.
∴a2+2a3+…+22n﹣2a2n=
﹣
﹣ ![]()
(2)證明:∵(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n.
∴兩邊對x求導可得:n(1+x+x2)n﹣1(1+2x)=a1+2a2x+…+2na2nx2n﹣1,
再一次求導可得:n[(n﹣1)(1+2x)2+2](1+x+x2)n﹣2=2a2+3×2a3x+…+2n(2n﹣1)a2nx2n﹣2,
=k(k﹣1),
令x=2可得:
a2+2A
a3+…+22n﹣2
a2n=n[25(n﹣1)+2]×7n﹣2,
n≥6時,n[25(n﹣1)+2]<7n﹣2,
∴
a2+2A
a3+…+22n﹣2
a2n=n[25(n﹣1)+2]×7n﹣2<49n﹣2.
【解析】(1)令x=0,則a0=1.令x=1,a0+a1+a2+…+a2n=3n , 可得a1+a2+…+a2n . 由(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n . 兩邊對x求導可得:n(1+x+x2)n﹣1=a1+2a2x+…+2na2nx2n﹣1 . 令x=0,可得n=a1 , 由(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n . 令x=2,可得
×7n=
+
+a2+2a3+…+22n﹣2a2n . 即可得出.(2)(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n . 由(1)可得:n(1+x+x2)n﹣1(1+2x)=a1+2a2x+…+2na2nx2n﹣1 , 兩邊對x求導可得:n[(n﹣1)(1+2x)2+2](1+x+x2)n﹣2=2a2+3×2a3x+…+2n(2n﹣1)a2nx2n﹣2 , 令x=2可得:
a2+2A
a3+…+22n﹣2
a2n=n[25(n﹣1)+2]×7n﹣2 , n≥6時,n[25(n﹣1)+2]<7n﹣2 , 即可證明.
科目:高中數學 來源: 題型:
【題目】設命題p:函數f(x)=lg(ax2﹣x+
)的值域為R;命題q:3x﹣9x<a對一切實數x恒成立,如果命題“p且q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:
=1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當點Q坐標為(0,1)時,點R坐標為(0,2) ![]()
(1)求橢圓C的標準方程;
(2)求證:
為定值;
(3)求證:過點R且與直線QB垂直的直線經過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學對一年級的甲、乙兩個班進行“數學學前教育”對“小學數學成績優秀”影響的試驗,其中甲班為試驗班(實施了數學學前教育),乙班為對比班(和甲班一樣進行常規教學,但沒有實施數學學前教育),在期末測試后得到如下數據:
優秀人數 | 非優秀人數 | 總計 | |
甲班 | 30 | 20 | 50 |
乙班 | 25 | 25 | 50 |
總計 | 55 | 45 | 100 |
能否在犯錯誤的概率不超過0.01的前提下,認為進行“數學學前教育”對“小學數學成績優秀”有積極作用?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心C的軌跡方程;
(2)過點(2,0)的直線l與動圓圓心C的軌跡交于A,B兩點,求證:
是一個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,以坐標原點O為圓心,橢圓C的短半軸長為半徑的圓與直線x+y+
=0相切.A,B分別是橢圓C的左、右頂點,直線l過B點且與x軸垂直.
(1)求橢圓C的標準方程;
(2)設G是橢圓C上異于A,B的任意一點,過點G作GH⊥x軸于點H,延長HG到點Q使得|HG|=|GQ|,連接AQ并延長交直線l于點M,N為線段MB的中點,判斷直線QN與以AB為直徑的圓O的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓
=1(a>b>0)的離心率為
,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q. ![]()
(1)若直線l的斜率為
,求
的值;
(2)若
=λ
,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點為噴泉,圓心O為AB的中點,其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點C處觀賞. ![]()
(1)若當∠OBC=
時,sin∠BCO=
,求此時a的值;
(2)設y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數,并求出a的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點C處觀賞噴泉時,觀賞角度∠ACB的最大值不小于
,試求A,B兩處噴泉間距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com