【題目】下列函數中,與y=
的奇偶性和單調性都相同的是( )
A.f(x)=x﹣1
B.f(x)=x ![]()
C.f(x)=x2
D.f(x)=x3
【答案】D
【解析】解:函數y=
是奇函數,且在R上是單調遞增函數,
A、f(x)=x﹣1是奇函數,且在R上不是單調遞增函數,故A不正確;
B、f(x)=
不是奇函數,故B不正確;
C、f(x)=x2是偶函數,故C不正確;
D、f(x)=x3 , 則x∈R,又f(﹣x)=﹣x3=﹣f(x),所以此函數是奇函數,y=x3在R上是增函數,故D正確,
故選D.
【考點精析】根據題目的已知條件,利用函數單調性的判斷方法和函數的奇偶性的相關知識可以得到問題的答案,需要掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點. ![]()
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求: ![]()
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實數a的取值范圍是( )
A.(0,1)
B.(0,
)
C.(﹣∞,1)
D.(﹣∞,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線c1:y2=2px(p>0)與曲線c2:(x﹣6)2+y2=36只有三個公共點O,M,N,其中O為坐標原點,且
=0. ![]()
(1)求曲線c1的方程;
(2)過定點M(3,2)的直線l與曲線c1交于A,B兩點,若點M是線段AB的中點,求線段AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com