【題目】已知函數
.
(1)若函數
在
上是減函數,求實數
的取值范圍;
(2)若函數
在
上存在兩個極值點
,且
,證明:
.
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.某市場研究人員為了了解共享單車運營公司
的經營狀況,對該公司最近六個月內的市場占有率進行了統計,并繪制了相應的拆線圖.
![]()
(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率
與月份代碼
之間的關系.求
關于
的線性回歸方程,并預測
公司2017年4月份(即
時)的市場占有率;
(2)為進一步擴大市場,公司擬再采購一批單車.現有采購成本分別為1000元/輛和1200元/輛的
兩款車型可供選擇,按規定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致車輛報廢年限各不相同.考慮到公司運營的經濟效益,該公司決定先對兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數表如下:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
| 20 | 35 | 35 | 10 | 100 |
| 10 | 30 | 40 | 20 | 100 |
經測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是
公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
(參考公式:回歸直線方程為
,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系
中,已知橢圓![]()
(
)的左焦點為
,離心率為
,過點
且垂直于長軸的弦長為
.
(1)求橢圓
的標準方程;
(2)若過點
的直線與橢圓相交于不同兩點
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】響應“文化強國建設”號召,某市把社區圖書閱覽室建設增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調查,統計數據表明,樣本中所有人每天用于閱讀的時間(簡稱閱讀用時)都不超過3小時,其頻數分布表如下:(用時單位:小時)
用時分組 |
|
|
|
|
|
|
頻數 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用樣本估計總體,求該市市民每天閱讀用時的平均值;
(2)為引導市民積極參與閱讀,有關部門牽頭舉辦市讀書經驗交流會,從這200人中篩選出男女代表各3名,其中有2名男代表和1名女代表喜歡古典文學.現從這6名代表中任選2名男代表和2名女代表參加交流會,求參加交流會的4名代表中,喜歡古典文學的男代表多于喜歡古典文學的女代表的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為100的調查樣本,其中城鎮戶籍與農民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述中錯誤的是( )
![]()
A. 是否傾向選擇生育二胎與戶籍有關
B. 是否傾向選擇生育二胎與性別無關
C. 傾向選擇生育二胎的人員中,男性人數與女性人數相同
D. 傾向選擇生育二的人員中,農村戶籍人數少于城鎮戶籍人數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品集團生產的火腿按行業生產標準分成8個等級,等級系數
依次為1,2,3,…,8,其中
為標準
,
為標準
.已知甲車間執行標準
,乙車間執行標準
生產該產品,且兩個車間的產品都符合相應的執行標準.
(1)已知甲車間的等級系數
的概率分布列如下表,若
的數學期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)為了分析乙車間的等級系數
,從該車間生產的火腿中隨機抽取30根,相應的等級系數組成一個樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用該樣本的頻率分布估計總體,將頻率視為概率,求等級系數
的概率分布列和均值;
(3)從乙車間中隨機抽取5根火腿,利用(2)的結果推斷恰好有三根火腿能達到標準
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com