【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)解析式f(x)=
﹣
(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
【答案】
(1)解:∵f(x)為定義在[﹣1,1]上的奇函數(shù),且f(x)在x=0處有意義,
∴f(0)=0,即f(0)=
﹣
=1﹣a=0.
∴a=1.
設(shè)x∈[0,1],則﹣x∈[﹣1,0].
∴f(﹣x)=
﹣
=4x﹣2x.
又∵f(﹣x)=﹣f(x)
∴﹣f(x)=4x﹣2x.
∴f(x)=2x﹣4x
(2)解:當(dāng)x∈[0,1],f(x)=2x﹣4x=2x﹣(2x)2,
∴設(shè)t=2x(t>0),則f(t)=t﹣t2.
∵x∈[0,1],∴t∈[1,2].
當(dāng)t=1時,取最大值,最大值為1﹣1=0
【解析】(1求出a=1;設(shè)x∈[0,1],則﹣x∈[﹣1,0],利用條件,即可寫出f(x)在[0,1]上的解析式;(2利用換元法求f(x)在[0,1]上的最大值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列不等關(guān)系正確的是( )
A.(
)
<34<(
)﹣2
B.(
)﹣2<(
)
<34
C.(2.5)0<(
)2.5<22.5
D.(
)2.5<(2.5)0<22.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x,對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
滿足約束條件
若目標(biāo)函數(shù)
的最小值為
,則實(shí)數(shù)
的值為
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,
是拋物線
的焦點(diǎn),
是拋物線
上的任意一點(diǎn),當(dāng)
位于第一象限內(nèi)時,
外接圓的圓心到拋物線
準(zhǔn)線的距離為
.
(1)求拋物線
的方程;
(2)過
的直線
交拋物線
于
兩點(diǎn),且
,點(diǎn)
為
軸上一點(diǎn),且
,求點(diǎn)
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx﹣1,若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x+y﹣1=0垂直.
(1)求a的值;
(2)函數(shù)g(x)=f(x)﹣m(x﹣1)(m∈R)恰有兩個零點(diǎn)x1 , x2(x1<x2),求函數(shù)g(x)的單調(diào)區(qū)間及實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域?yàn)镽的函數(shù)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個不同的解x1 , x2 , x3 , 則
的值是( )
A.1
B.3
C.5
D.10
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com