【題目】已知數列{an}中,a1=﹣1,an+1=2an+3n﹣1(n∈N*),則其前n項和Sn= .
【答案】2n+2﹣4﹣ ![]()
【解析】解:∵an+1=2an+3n﹣1(n∈N*),a1=﹣1,∴a2=0. n≥2時,an=2an﹣1+3n﹣4,
相減可得:an+1﹣an=2an﹣2an﹣1+3,
化為:an+1﹣an+3=2(an﹣an﹣1+3),
∴數列{an﹣an﹣1+3}為等比數列,首項為4,公比為2.
∴an﹣an﹣1+3=4×2n﹣2 , ∴an﹣an﹣1=2n﹣3.
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1
=2n﹣3+2n﹣1﹣3+…+22﹣3﹣1,
=
﹣3(n﹣1)﹣1
=2n+1﹣3n﹣2.
∴其前n項和Sn=
﹣3×
﹣2n=2n+2﹣4﹣
.
所以答案是:2n+2﹣4﹣
.
【考點精析】本題主要考查了數列的前n項和的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】給出下列命題:
存在每個面都是直角三角形的四面體;
若三棱錐的三條側棱兩兩垂直,則其三個側面也兩兩垂直;
棱臺的側棱延長后交于一點;
用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;
其中正確命題的個數是
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校研究性學習小組從汽車市場上隨機抽取20輛純電動汽車,調查其續駛里程(單次充電后能行駛的最大里程),被調查汽車的續駛里程全部介于50公里和300公里之間,將統計結果分成5組:
,繪制成如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值及續駛里程在
的車輛數;
(2)若從續駛里程在
的車輛中隨機抽取2輛車,求其中恰有一輛車的續駛里程在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3. ![]()
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某樂隊參加一戶外音樂節,準備從3首原創新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創新曲的概率;
(2)假定演唱一首原創新曲觀眾與樂隊的互動指數為a(a為常數),演唱一首經典歌曲觀眾與樂隊的互動指數為2a,求觀眾與樂隊的互動指數之和X的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 對任意n∈N+ , Sn=(﹣1)nan+
+n﹣3且(t﹣an+1)(t﹣an)<0恒成立,則實數t的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com