【題目】如圖①,在邊長為4的正方形ABCD中,E,F分別是邊AB,BC上的點(端點除外),將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖②).
(1)求證:A′D⊥EF;
(2)當點E,F分別為AB,BC的中點時,求直線A′E與直線BD所成角的余弦值.
![]()
科目:高中數學 來源: 題型:
【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l總過定點A,并說明直線l與圓C總相交.
(2)m為何值時,直線l被圓C所截得的弦長最小?請求出該最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫出下面兩個的相關命題的逆命題、否命題、逆否命題,并判斷它們的真假:
(1)命題:若
,則
.
逆命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
(2)命題:設
是實數,如果
,那么
有實數根。
否命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形
是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點.
![]()
(1)求證:
平面
;
(2)求平面
與平面
所成銳二面角的大小;
(3)在線段
上是否存在一點
,使直線
與直線
所成的角為
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系
中的一個橢圓,它的中心在原點,左焦點為
,右頂點為
,
(1)求該橢圓的標準方程;
(2)(文)若
是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;
(理)若已知點
,
是橢圓上的動點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某學校擬建一塊五邊形區域的“讀書角”,三角形區域ABE為書籍擺放區,沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區域為BCDE為閱讀區,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CD=
m.
![]()
(1)求兩區域邊界BE的長度;
(2)若區域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com