已知函數(shù)
,(
).
(Ⅰ)已知函數(shù)
的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)
的范圍.
(Ⅱ)記函數(shù)
的圖象為曲線
.設(shè)點(diǎn)
,
是曲線
上的不同兩點(diǎn).如果在曲線
上存在點(diǎn)
,使得:①
;②曲線
在點(diǎn)
處的切線平行于直線
,則稱函數(shù)
存在“中值相依切線”.
試問:函數(shù)
(
且
)是否存在“中值相依切線”,請(qǐng)說明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是實(shí)數(shù),函數(shù)
。
(1)若
,求
的值及曲線
在點(diǎn)
處的切線方程;
(2)求
在區(qū)間
上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
在
上是增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)若
是
的極值點(diǎn),求
在
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且函數(shù)
在
和
處都取得極值。
(1)求實(shí)數(shù)
的值;
(2)求函數(shù)
的極值;
(3)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
,
,
(1)求函數(shù)
的最值;
(2)對(duì)于一切正數(shù)
,恒有
成立,求實(shí)數(shù)
的取值組成的集合。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)函數(shù)
(1)當(dāng)
時(shí),求函數(shù)
的最大值;
(2)令
,(
)其圖象上任意一點(diǎn)
處切線的斜率
≤
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
,方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的極大值;
(Ⅱ)若
對(duì)滿足
的任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍(這里
是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)
、
、
、
,恒有![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(15分)已知函數(shù)
.
(1)若
的切線,函數(shù)
處取得極值1,求
,
,
的值;
證明:
;
(3)若
,且函數(shù)
上單調(diào)遞增,
求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)y=f(x)是定義在區(qū)間[-
,
]上的偶函數(shù),且
x∈[0,
]時(shí),![]()
(1)求函數(shù)f(x)的解析式;
(2)若矩形ABCD的頂點(diǎn)A,B在函數(shù)y=f(x)的圖像上,頂點(diǎn)C,D在x軸上,求矩形ABCD面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com