【題目】如圖1,四邊形
是邊長為2的菱形,
,
為
的中點,以
為折痕將
折起到
的位置,使得平面
平面
,如圖2.
![]()
(1)證明:平面
平面
;
(2)求二面角
的余弦值.
【答案】(1)證明見解析(2)![]()
【解析】
(1)依題意可得
,由面面垂直的性質可得
平面
,從而得到
,再證
,即可得到
平面
,從而得證;
(2)以
為原點,分別以
,
,
的方向為
軸,
軸,
軸的正方向,建立空間直角坐標系
,利用空間向量求二面角的余弦值;
解:(1)依題意知,因為
,所以
,
當平面
平面
時,
平面
平面
,
平面
,
所以
平面
,
因為
平面
,所以
,
由已知,
是等邊三角形,且
為
的中點,
所以
,
,所以
,
又
,
平面
,
平面
,
所以
平面
,
又
平面
,所以平面
平面
.
(2)以
為原點,分別以
,
,
的方向為
軸,
軸,
軸的正方向,建立空間直角坐標系
,
![]()
則
,
,
,
,
,
,
,
,
設平面
的一個法向量
,平面
的一個法向量![]()
由
得
;令
,解得
,
,
所以
,
由
得
;令
,解得
,
,
所以
,
.
易得所求二面角為銳角,所以二面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】設
,
。
(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數M;
(Ⅱ)如果對于任意的
都有f(s)≥g(t)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創建知識的網絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統計結果如下表所示:
組別 |
|
|
|
|
|
|
|
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以認為,此次問卷調查的得分
服從正態分布
,
近似為這1000人得分的平均值(同一組數據用該組區間的中點值作為代表),請利用正態分布的知識求
;
(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:
(i)得分不低于
的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
(ii)每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
|
|
現市民小王要參加此次問卷調查,記
(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列及數學期望.
附:①
;
②若
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著互聯網技術的快速發展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創業者計劃在某景區附近租賃一套農房發展成特色“農家樂”,為了確定未來發展方向,此創業者對該景區附近六家“農家樂”跟蹤調查了
天.得到的統計數據如下表,
為收費標準(單位:元/日),
為入住天數(單位:),以頻率作為各自的“入住率”,收費標準
與“入住率”
的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
![]()
(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記
為“入住率”超過
的農家樂的個數,求
的概率分布列;
(2)令
,由散點圖判斷
與
哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(
結果保留一位小數)
(3)若一年按
天計算,試估計收費標準為多少時,年銷售額![]()
入住率
收費標準
)
參考數據:
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究廣大市民對共享單車的使用情況,某公司在我市隨機抽取了100名用戶進行調查,得到如下數據:
每周使用次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
認為每周使用超過3次的用戶為“喜歡騎共享單車”.
(1)分別估算男、女“喜歡騎共享單車”的概率;
(2)請完成下面的2×2列聯表,并判斷能否有95%把握,認為是否“喜歡騎共享單車”與性別有關.
不喜歡騎共享單車 | 喜歡騎共享單車 | 合計 | |
男 | |||
女 | |||
合計 |
附表及公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,點
,
,
分別為橢圓的右頂點,上頂點和右焦點,且
.
(1)求橢圓
的方程;
(2)
,
是橢圓上的兩個動點,若直線
與直線
的斜率之和為
,證明,直線
恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第十三屆全國人大第二次會議于2019年3月5日在北京開幕.為廣泛了解民意,某人大代表利用網站進行民意調查.數據調查顯示,民生問題是百姓最為關心的熱點,參與調查者中關注此問題的約占
.現從參與調查者中隨機選出200人,并將這200人按年齡分組,第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)求
;
(2)現在要從年齡較小的第1組和第2組中用分層抽樣的方法抽取5人,并再從這5人中隨機抽取2人接受現場訪談,求這兩人恰好屬于不同組別的概率;
(3)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中不關注民生問題的中老年人有10人,問是否有
的把握認為是否關注民生與年齡有關?
附:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com