【題目】已知數列{an}的各項均為正數,滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證:
;
(2)若{an}是等比數列,求數列{an}的通項公式;
(3)設數列{an}的前n項和為Sn , 求證:
.
【答案】
(1)證明:∵ak+1﹣ak=ai>0(i≤k,k=1,2,3,…,n﹣1),
∴數列{an}是遞增數列,即1<a2<a3<…<an.
又∵ak+1﹣ak=ai≥1(i≤k,k=1,2,3,…,n﹣1),
∴ak+1﹣ak≥1(k=1,2,3,…,n﹣1).
(2)解:∵a2﹣a1=a1,∴a2=2a1;
∵{an}是等比數列,∴數列{an}的公比為2.
∵ak+1﹣ak=ai(i≤k,k=1,2,3,…,n﹣1),∴當i=k時有ak+1=2ak.
這說明在已知條件下,可以得到唯一的等比數列.
∴
.
(3)證明:∵1=a1=1,2=a2=2,
,
,…,
,
由上面n個式子相加,得到:
,
化簡得
,
∴
.
【解析】(1)利用數列的單調性即可證明;(2)利用遞推關系、等比數列的通項公式即可得出;(3)利用“累加求和”與不等式的性質即可得出.
【考點精析】利用數列的前n項和和數列的通項公式對題目進行判斷即可得到答案,需要熟知數列{an}的前n項和sn與通項an的關系
;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)=
x2﹣kx;
(1)設k=m+
(m>0),若函數h(x)=f(x)+g(x)在區間(0,2)內有且僅有一個極值點,求實數m的取值范圍;
(2)設M(x)=f(x)﹣g(x),若函數M(x)存在兩個零點x1 , x2(x1>x2),且滿足2x0=x1+x2 , 問:函數M(x)在(x0 , M(x0))處的切線能否平行于直線y=1,若能,求出該切線方程,若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】坐標系與參數方程在直角坐標系xOy中,圓C的參數方程
(φ為參數).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)射線OM:θ=
與圓C的交點為O、P兩點,求P點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信搶紅包”自2015年以來異常火爆,在某個微信群某次進行的搶紅包活動中,若所發紅包的總金額為8元,被隨機分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
的離心率為
,F是橢圓C的右焦點.過點F且斜率為k(k≠0)的直線l與橢圓C交于A,B兩點,O是坐標原點.
(1)求n的值;
(2)若線段AB的垂直平分線在y軸的截距為
,求k的值;
(3)是否存在點P(t,0),使得PF為∠APB的平分線?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com