【題目】設數列
的通項公式為
(
,
),數列
定義如下:對于正整數
,
是使得不等式
成立的所有
中的最小值.
(1)若
,
,求
;
(2)若
,
,求數列
的前
項和公式;
(3)是否存在
和
,使得
?如果存在,求
和
的取值范圍;如果不存在,請說明理由.
【答案】(1)
;(2)
;(3)
和
的取值范圍分別是
,
.
【解析】(Ⅰ)由題意,得
,解
,得
. ---------------2分
∴
成立的所有n中的最小整數為7,即
.-----------4分
(Ⅱ)由題意,得
,對于正整數,由
,得
. -------------------6分
根據
的定義可知:當
時,
;當
時,
.
∴![]()
![]()
. ---------------------9分
(Ⅲ)假設存在p和q滿足條件,由不等式
及
得
.------10分
∵
,根據
的定義可知,對于任意的正整數m都有
,即
對任意的正整數m都成立.
當
(或
)時,得
(或
),----12分
這與上述結論矛盾!
當
,即
時,得
,解得
.
∴ 存在p和q,使得
;
p和q的取值范圍分別是
,
. ----------14分
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,有2Sn=n2+n+4(n∈+)
(1)求數列的通項公式an;
(2)若bn=
,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某生態園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.![]()
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價為每平方米150元,AQ段圍墻造價為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+x2 .
(Ⅰ)求函數h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數g(x)=f(x)﹣ax在定義域內為增函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1的參數方程為
(θ為參數),曲線 C2的極坐標方程為ρcosθ﹣
ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標方程;
(2)設P為曲線C1上一點,Q為曲線 C2上一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數列{an}的通項公式;
(2)若數列{bn}的各項均為正數,且bn是
與
的等比中項,求bn的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面ADE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知圓
的半徑為2,圓心在
軸的正半軸上,且與直線
相切.
(1)求圓
的方程。
(2)在圓
上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且△
的面積最大?若存在,求出點
的坐標及對應的△
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當a=1時,求f(x)的單調區間;
(2)若函數f(x)在(0,
)上無零點,求a最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com