【題目】已知函數(shù)f(x)=
sinωx+cosωx(ω>0)的圖象與直線y=﹣2的兩個相鄰公共點之間的距離等于π,則f(x)的單調遞減區(qū)間是( )
A.[kπ+
,kπ+
],k∈z
B.[kπ﹣
,kπ+
],k∈z
C.[2kπ+
,2kπ+
],k∈z
D.[2kπ﹣
,2kπ+
],k∈z
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
sinxcosx+sin2x+
(x∈R).
(Ⅰ)當x∈[﹣
,
]時,求f(x)的最大值.
(Ⅱ)設△ABC的內角A,B,C所對的邊分別為a,b,c,且c=
,f(C)=2,sinB=2sinA,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,
.
(1)求數(shù)列
的通項公式;
(2)設
,
=
,記數(shù)列
的前
項和
.若對
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點
在
軸正半軸上,過點
的直線交拋物線于
兩點,線段
的長是
,
的中點到
軸的距離是
.
(1)求拋物線的標準方程;
(2)過點
作斜率為
的直線與拋物線交于
兩點,直線
交拋物線于
,
①求證:
軸為
的角平分線;
②若
交拋物線于
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設滿足以下兩個條件的有窮數(shù)列
,
,
,
為
階“期待數(shù)列”:
①
;
②
.
(
)分別寫出一個單調遞增的
階和
階“期待數(shù)列”.
(
)若某
階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
(
)記
階“期待數(shù)列”的前
項和為
,試證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C:
=1(a>b>0)過點P(1,
).離心率為
.
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A,B兩點.
①若直線l過橢圓C的右焦點,記△ABP三條邊所在直線的斜率的乘積為t.
求t的最大值;
②若直線l的斜率為
,試探究OA2+ OB2是否為定值,若是定值,則求出此
定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場經銷一批進價為每件30元的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所給的坐標圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對(x,y)的對應點,并確定y與x的一個函數(shù)關系式;
![]()
(2)設經營此商品的日銷售利潤為P元,根據(jù)上述關系,寫出P關于x的函數(shù)關系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com