【題目】已知函數(shù)
,下列結(jié)論中錯(cuò)誤的是( )
A.
的圖像關(guān)于點(diǎn)
對(duì)稱B.
的圖像關(guān)于直線
對(duì)稱
C.
的最大值為
D.
是周期函數(shù)
【答案】C
【解析】
根據(jù)對(duì)稱性,周期性最值的概念結(jié)合三角函數(shù)的運(yùn)算,逐項(xiàng)判斷即可.
對(duì)于A,因?yàn)?/span>f(π﹣x)+f(x)=sin(π﹣x)sin(2π﹣2x)+sinxsin2x=0,所以A正確;
對(duì)于B,f(2π﹣x)=sin(2π﹣x)sin(4π﹣2x)=sinxsin2x=f(x),所以
的圖像關(guān)于直線
對(duì)稱,所以B正確;
對(duì)于C,f(x)=sinxsin2x=2sin2xcosx=2(1﹣cos2x)cosx=2cosx﹣2cos3x,令t=cosx,則t∈[﹣1,1],f(x)=g(t)=2t﹣2t3,令g′(t)=2﹣6t2=0,得,t
,
,
,
,
,所以
的最大值是
,從而
的最大值是
,故C錯(cuò)誤;
對(duì)于D,因?yàn)?/span>
,即f(2π+x)=f(x),故2π為函數(shù)f(x)的一個(gè)周期,故D正確;
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.
![]()
若在圖④中隨機(jī)選取-點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)討論
的單調(diào)性,并證明
有且僅有兩個(gè)零點(diǎn);
(Ⅱ)設(shè)
是
的一個(gè)零點(diǎn),證明曲線
在點(diǎn)
處的切線也是曲線
的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如
,![]()
,2,
,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列
比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 |
| 4 |
| 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時(shí)的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請(qǐng)比較第
問中的
和第
問中的
,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請(qǐng)至少寫出三條理由![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有窮數(shù)列
共有
項(xiàng)
,首項(xiàng)
,設(shè)該數(shù)列的前
項(xiàng)和為
,且![]()
其中常數(shù)
.
(1)求證:數(shù)列
是等比數(shù)列
(2)若
,數(shù)列
滿足![]()
,求出數(shù)列
的通項(xiàng)公式
(3)若(2)中的數(shù)列
滿足不等式
,求出
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
分別為雙曲線![]()
![]()
的左、右焦點(diǎn),點(diǎn)P是以
為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段
的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對(duì)一切正實(shí)數(shù)
,
,不等式
恒成立,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的最小正周期;
(2)將函數(shù)
的圖象向右平移
個(gè)單位長(zhǎng)度,再向下平移
(
)個(gè)單位長(zhǎng)度后得到函數(shù)
的圖象,且函數(shù)
的最大值為2.
(ⅰ)求函數(shù)
的解析式; (ⅱ)證明:存在無窮多個(gè)互不相同的正整數(shù)
,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
![]()
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬元
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com