【題目】已知函數(shù)
.
(1)當(dāng)
時,討論
的單調(diào)性;
(2)設(shè)
,若關(guān)于
的不等式
在
上有解,求
的取值范圍.
【答案】(1)見解析;(2)
.
【解析】試題分析: (1)對函數(shù)兩次求導(dǎo),判斷出函數(shù)的單調(diào)性;(2)將函數(shù)g(x)的解析式代入關(guān)于x的不等式,化簡并構(gòu)造新函數(shù),對新函數(shù)求導(dǎo),討論參數(shù)的范圍判斷出單調(diào)性求出最值,代入不等式即可.
試題解析:
(1)由題意知,
,
令
,當(dāng)
時,
恒成立,
∴當(dāng)
時,
;當(dāng)
時,
,
∴函數(shù)
在
上單調(diào)遞增,在
上單調(diào)遞減.
(2)∵
,∴
,
由題意知,存在
,使得
成立.
即存在
,使得
成立,
令
,
∴
.
①
時,
,則
,∴函數(shù)
在
上單調(diào)遞減,
∴
成立,解得
,∴
;
②當(dāng)
時,令
,解得
;令
,解得
,
∴函數(shù)
在
上單調(diào)遞增,在
上單調(diào)遞減,
又
,∴
,解得
,∴
無解;
③當(dāng)
時,
,則
,∴函數(shù)
在
上單調(diào)遞增,
∴
,不符合題意,舍去;
綜上所述,
的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺
的上下底面分別是邊長為2和4的正方形,
= 4且
⊥底面
,點
為
的中點.
![]()
(Ⅰ)求證:
面
;
(Ⅱ)在
邊上找一點
,使
∥面
,
并求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲盒子中有
個紅球,
個藍球,乙盒子中有
個紅球,
個藍球
,同時從甲乙兩個盒子中取出
個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為
.(b)交換后,乙盒子中含有紅球的個數(shù)記為
.則( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
的圖象向左平移
個單位長度,再向上平移1個單位長度,得到函數(shù)
的圖象,則函數(shù)
具有性質(zhì)__________.(填入所有正確性質(zhì)的序號)
①最大值為
,圖象關(guān)于直線
對稱;
②圖象關(guān)于
軸對稱;
③最小正周期為
;
④圖象關(guān)于點
對稱;
⑤在
上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx
x2﹣ax+1.
(1)設(shè)g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個極值點x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個
米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場使用網(wǎng)箱養(yǎng)殖的方法,收獲時隨機抽取了 100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:
),其頻率分布直方圖如圖:
定義箱產(chǎn)量在
(單位:
)的網(wǎng)箱為“穩(wěn)產(chǎn)網(wǎng)箱”, 箱產(chǎn)量在區(qū)間
之外的網(wǎng)箱為“非穩(wěn)產(chǎn)網(wǎng)箱”.
![]()
(1)從該養(yǎng)殖場(該養(yǎng)殖場中的網(wǎng)箱數(shù)量是巨大的)中隨機抽取3個網(wǎng)箱.將頻率視為概率,設(shè)其中穩(wěn)產(chǎn)網(wǎng)箱的個數(shù)為
,求
的分布列與期望
;
(2)從樣本中隨機抽取3個網(wǎng)箱,設(shè)其中穩(wěn)產(chǎn)網(wǎng)箱的個數(shù)為
,試比較
的期望
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在
上的函數(shù)
,若已知其在
內(nèi)只取到一個最大值和一個最小值,且當(dāng)
時函數(shù)取得最大值為
;當(dāng)
,函數(shù)取得最小值為
.
(1)求出此函數(shù)的解析式;
(2)若將函數(shù)
的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>
得到函數(shù)
,再將函數(shù)
的圖像向左平移
個單位得到函數(shù)
,已知函數(shù)
的最大值為
,求滿足條件的
的最小值;
(3)是否存在實數(shù)
,滿足不等式
?若存在,求出
的范圍(或值),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)試討論
在
極值點的個數(shù);
(2)若函數(shù)
的兩個極值點為
,且
,
為
的導(dǎo)函數(shù),設(shè)
,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com