【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=
,若方程g[f(x)]-a=0(a>0)有6個實(shí)數(shù)根(互不相同),則實(shí)數(shù)a的取值范圍是______.
【答案】![]()
【解析】分析:利用換元法設(shè)t=f(x),則g(t)=a分別作出兩個函數(shù)的圖象,根據(jù)a的取值確定t的取值范圍,利用數(shù)形結(jié)合進(jìn)行求解判斷即可.
詳解:作出函數(shù)f(x)和g(x)的圖象如圖:
,
,由g[f(x)]-a=0(a>0)得g[f(x)]=a,(a>0)設(shè)t=f(x),則g(t)=a,(a>0)由y=g(t)的圖象知,①當(dāng)0<a<1時,方程g(t)=a有兩個根-4<t1<-3,或-4<t2<-2,由t=f(x)的圖象知,當(dāng)-4<t1<-3時,t=f(x)有0個根,當(dāng)-4<t2<-2時,t=f(x)有0個根,此時方程g[f(x)]-a=0(a>0)有0個根,②當(dāng)a=1時,方程g(t)=a有兩個根t1=-3,或t2=
,由t=f(x)的圖象知,當(dāng)t1=-3時,t=f(x)有0個根,當(dāng)t2=
時,t=f(x)有3個根,此時方程g[f(x)]-a=0(a>0)有3個根,③當(dāng)1<a<
時,方程g(t)=a有兩個根0<t1<
,或
<t2<1,由t=f(x)的圖象知,當(dāng)0<t1<
時,t=f(x)有3個根,當(dāng)
<t2<1時,t=f(x)有3個根,此時方程g[f(x)]-a=0(a>0)有3+3=6個根,當(dāng)a=
由圖可得同理只有5解,綜合的故若方程g[f(x)]-a=0(a>0)有6個實(shí)數(shù)根(互不相同),則實(shí)數(shù)a的取值范圍是![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個程序框圖,則輸出n的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
![]()
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額
(單位:億元)的折線圖.
![]()
為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了
與時間變量
的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量
的值依次為
)建立模型①:
;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量
的值依次為
)建立模型②:
.
(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;
(2)你認(rèn)為用哪個模型得到的預(yù)測值更可靠?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
![]()
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價格如下表:
時間 | 第4天 | 第32天 | 第60天 | 第90天 |
價格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價格
關(guān)于時間
的函數(shù)關(guān)系式;(
表示投放市場的第
天);
(2)銷售量
與時間
的函數(shù)關(guān)系:
,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.用
表示m,n中的最小值,設(shè)函數(shù)
.
(1)當(dāng)
時,求
的最大值;
(2)討論
零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
三個警亭有直道相通,已知
在
的正北方向6千米處,
在
的正東方向
千米處.
(1)警員甲從
出發(fā),沿
行至點(diǎn)
處,此時
,求
的距離;
(2)警員甲從
出發(fā)沿
前往
,警員乙從
出發(fā)沿
前往
,兩人同時出發(fā),甲的速度為3千米/小時,乙的速度為6千米/小時.兩人通過專用對講機(jī)保持聯(lián)系,乙到達(dá)
后原地等待,直到甲到達(dá)
時任務(wù)結(jié)束.若對講機(jī)的有效通話距離不超過9千米,試問兩人通過對講機(jī)能保持聯(lián)系的總時長?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,
是
上一點(diǎn),且
.
(1)求
的方程;
(2)設(shè)點(diǎn)
是
上異于點(diǎn)
的一點(diǎn),直線
與直線
交于點(diǎn)
,過點(diǎn)
作
軸的垂線交
于點(diǎn)
,證明:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象與
軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為
,且圖象過點(diǎn)![]()
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)將函數(shù)
的圖象向右平移
個單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,若關(guān)于
的方程
,在區(qū)間
上有且只有一個實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com