【題目】已知函數f(x)=
+x在x=1處的切線方程為2x﹣y+b=0.
(Ⅰ)求實數a,b的值;
(Ⅱ)若函數g(x)=f(x)+
x2﹣kx,且g(x)是其定義域上的增函數,求實數k的取值范圍.
【答案】(1) a=1,b=﹣1;(2) k≤3.
【解析】試題分析:(1)由切線方程,布列方程組,解之即可;(2)g(x)在其定義域(0,+∞)上是增函數,即g′(x)≥0在其定義域上恒成立,變量分離求最值即可.
試題解析:
(Ⅰ)∵f(x)=
+x,
∴f′(x)=
+1,
∵f(x)在x=1處的切線方程為2x﹣y+b=0,
∴
+1=2, 2﹣1+b=0, ∴a=1,b=﹣1;
(Ⅱ)f(x)=lnx+x,g(x)=
x2﹣kx+lnx+x,
∴g′(x)=x﹣k+
+1,
∵g(x)在其定義域(0,+∞)上是增函數,∴g′(x)≥0在其定義域上恒成立,
∴x﹣k+
+1≥0在其定義域上恒成立 ∴k≤x+
+1在其定義域上恒成立,
而x+
+1≥2
+1=3,當且僅當x=1時“=”成立, ∴k≤3.
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒,已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為
(a為常數),如圖所示.根據圖中提供的信息,回答下列問題:
![]()
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數關系式為_________;
(2)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室,那么從藥物釋放開始,至少需要經過_________小時后,學生才能回到教室.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為加快新能源汽車產業(yè)發(fā)展,推進節(jié)能減排,國家鼓勵消費者購買新能源汽車,某校研究性學習小組,從汽車市場上隨機選取了
輛純電動乘用車,根據其續(xù)駛里程
(單次充電后能行駛的最大里程)作出了頻率與頻數的統(tǒng)計表:
![]()
(1)求
的值;
(2)若用分層抽樣的方法從這
輛純電動乘用車中抽取一個容量為6的樣本,從該樣本中任選2輛,求選到的2輛車續(xù)駛里程為
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過
的有20人,不超過
的有10人.在20名女性駕駛員中,平均車速超過
的有5人,不超過
的有15人.
(Ⅰ)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過
的人與性別有關;
平均車速超過
| 平均車速不超過
| 合計 | |
男性駕駛員人數 | |||
女性駕駛員人數 | |||
合計 |
(Ⅱ )以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過
的車輛數為
,若每次抽取的結果是相互獨立的,求
的分布列和數學期望.
參考公式:
,其中
.
參考數據:
| 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是同時符合以下性質的函數f(x)組成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數.
(1)判斷函數f1(x)=2-
和f2(x)=1+3·
(x≥0)是否屬于集合A,并簡要說明理由;
(2)把(1)中你認為是集合A中的一個函數記為g(x),若不等式g(x)+g(x+2)≤k對任意的x≥0總成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修
:不等式選講
已知函數f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數m的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com