(本小題滿
分l2分)(注意:在試題卷上作答無效)![]()
如圖,四棱錐
中,
∥
,
,側面
為等邊三角形.![]()
.
(I) 證明:![]()
(II) 求AB與平面SBC所成角的大小。
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四邊形ABCD滿足BC∥AD,AB⊥AD,AB=BC=1.點E,F分別為側棱PB,PC上的點,且
=λ.![]()
(1)求證:EF∥平面PAD.
(2)當λ=
時,求異面直線BF與CD所成角的余弦值;
(3)是否存在實數λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐
中,頂點
在底面
內的射影恰好落在
的中點
上,又
,
且![]()
![]()
(1)求證:
;
(2)若
,求直線
與
所成角的余弦值;
(3)若平面
與平面
所成的角為
,求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點 .![]()
(1)求二面角B1MNB的正切值;
(2)求證:PB⊥平面MNB1;
(3)若正方體的棱長為1,畫出一個正方體表面展開圖,使其滿足“有4個正方形面相連成一個長方形”的條件,并求出展開圖中P、B兩點間的距離 .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,
為等邊三角形,且![]()
點F為棱BE上的動點。![]()
(I)若DE//平面AFC,試確定點F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
.(本題14分)已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量
為一組鄰邊的平行四邊形的面積S;
⑵若向量
分別與向量
垂直,且
=
,求向量
的坐標。![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com