(本小題滿分12分)
在四棱錐
中,
,
,
平面
,
為
的中點,
.![]()
(Ⅰ)求四棱錐
的體積
;
(Ⅱ)若
為
的中點,求證:平面
平面
;
(Ⅲ)求二面角
的大小。.
(Ⅰ)
(Ⅱ)關(guān)鍵證明
平面
(Ⅲ) ![]()
解析試題分析:解:(Ⅰ)在
中,
,
,∴
,
……1分
在
中,
,
,∴
,
…………2分
∴
…………3分
則
…………………………………………4分
(Ⅱ)∵
平面
,∴
…………………………5分
又
,
,
∴
平面
……………………6分
∵
、
分別為
、
中點,
∴
∴
平面
……………………7分
∵
平面
,∴平面
平面
…………8分
(Ⅲ)取
的中點
,連結(jié)
,則
,
∴
平面
,過
作
于
,
連接
,則
為二面角
的平面角。……………………10分
∵
為
的中點,
,
,
∴
,又
,∴
,
故
即二面角
的大小為
…………………………12分。
考點:錐體的體積;直線與平面、平面與平面垂直的判定定理;平面角的二面角。
點評:對于比較規(guī)則的幾何體,建立空間直角坐標(biāo)系對解決問題有很好幫助,特別是求二面角。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,在棱長為3的正方體
中,
.![]()
⑴求兩條異面直線
與
所成角的余弦值;
⑵求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于
所在平面,且PA=AB=AC.![]()
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若
,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)如圖:AD=2,AB=4的長方形
所在平面與正
所在平面互相垂直,
分別為
的中點.![]()
(1)求四棱錐
-
的體積;
(2)求證:
平面
;
(3)試問:在線段
上是否存在一點
,使得平面
平面
?若存在,試指出點
的位置,并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)在直三棱柱(側(cè)棱垂直底面)
中,
,
.![]()
(Ⅰ)若異面直線
與
所成的角為
,求棱柱的高;
(Ⅱ)設(shè)
是
的中點,
與平面
所成的角為
,當(dāng)棱柱的高變化時,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面,
,E、F分別是AB、PD的中點. ![]()
(1)求證:平面PCE
平面PCD;
(2)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在正四棱錐
中,側(cè)棱
的長為
,
與
所成的角的大小等于
.![]()
(1)求正四棱錐
的體積;
(2)若正四棱錐
的五個頂點都在球
的表面上,求此球
的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知平面
//平面
,AB、CD是夾在
、
間的兩條線段,A、C在
內(nèi),B、D在
內(nèi),點E、F分別在AB、CD上,且
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com