已知函數(shù)
(
為實(shí)常數(shù)) .
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(2)當(dāng)
時(shí),討論方程
根的個(gè)數(shù).
(3)若
,且對(duì)任意的
,都有
,求實(shí)數(shù)a的取值范圍.
(1)
.
;(2)
時(shí),方程
有2個(gè)相異的根.
或
時(shí),方程
有1個(gè)根.
時(shí),方程
有0個(gè)根.(3)
.
解析試題分析:(1)通過求導(dǎo)數(shù)可得函數(shù)的單調(diào)性,在對(duì)比區(qū)間的兩端點(diǎn)的函數(shù)值即可求得函數(shù)的最大值.(2)由于參數(shù)
的變化.可以采取分離變量的方法,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題.其中一個(gè)是垂直于y軸的直線,另一個(gè)是通過求出函數(shù)的走向.根據(jù)圖像即可得到結(jié)論.(3)將要說明的結(jié)論通過變形得到一個(gè)等價(jià)問題從而證明新的函數(shù)的單調(diào)性,使得問題巧妙地轉(zhuǎn)化.本題只是容量大.通過研究函數(shù)的單調(diào)性,含參函數(shù)的討論.與不等式的相結(jié)合轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
試題解析:(1)
,當(dāng)
時(shí),
.當(dāng)
時(shí),
,又
,
故
,當(dāng)
時(shí),取等號(hào) 4分
(2)易知
,故
,方程
根的個(gè)數(shù)等價(jià)于
時(shí),方程
根的個(gè)數(shù). 設(shè)
=
, ![]()
當(dāng)
時(shí),
,函數(shù)
遞減,當(dāng)
時(shí),
,函數(shù)
遞增.又
,
,作出
與直線
的圖像,由圖像知:
當(dāng)
時(shí),即
時(shí),方程
有2個(gè)相異的根;
當(dāng)
或
時(shí),方程
有1個(gè)根;
當(dāng)
時(shí),方程
有0個(gè)根; 10分
(3)當(dāng)
時(shí),
在
時(shí)是增函數(shù),又函數(shù)
是減函數(shù),不妨設(shè)
,則
等價(jià)于![]()
即
,故原題等價(jià)于函數(shù)
在
時(shí)是減函數(shù),
恒成立,即
在
時(shí)恒成立.
在
時(shí)是減函數(shù)
16分
(其他解法酌情給分)
考點(diǎn):1.函數(shù)的最值問題.2.函數(shù)的單調(diào)性.3.函數(shù)與不等式的關(guān)系以及轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
:
.
(Ⅰ)當(dāng)
時(shí),求曲線
的斜率為1的切線方程;
(Ⅱ)設(shè)斜率為
的兩條直線與曲線
相切于
兩點(diǎn),求證:
中點(diǎn)
在曲線
上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線
的方程為:
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
,已知
(n∈N*).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),![]()
(Ⅲ)令
,數(shù)列
的前
項(xiàng)和為
.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)
、
,點(diǎn)
為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足![]()
.
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)若點(diǎn)
是動(dòng)點(diǎn)
的軌跡上的一點(diǎn),
是
軸上的一動(dòng)點(diǎn),試討論直線
與圓![]()
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
是實(shí)數(shù)).
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)若
,且
有兩個(gè)極值點(diǎn)
,求
的取值范圍.
(其中
是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
.
(1)當(dāng)
時(shí),函數(shù)
取得極值,求
的值;
(2)當(dāng)
時(shí),求函數(shù)
在區(qū)間[1,2]上的最大值;
(3)當(dāng)
時(shí),關(guān)于
的方程![]()
有唯一實(shí)數(shù)解,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若
,試確定函數(shù)
的單調(diào)區(qū)間;
(2)若
且對(duì)任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在定義域內(nèi)為增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)設(shè)
,若函數(shù)
存在兩個(gè)零點(diǎn)
,且實(shí)數(shù)
滿足
,問:函數(shù)
在
處的切線能否平行于
軸?若能,求出該切線方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com