【題目】若y=(m﹣1)x2+2mx+3是偶函數(shù),則f(﹣1),f(﹣
),f(
)的大小關(guān)系為( )
A.f(
)>f(
)>f(﹣1)
B.f(
)<f(﹣
)<f(﹣1)??
C.f(﹣
)<f(
)<f(﹣1)
D.f(﹣1)<f(
)<f(﹣
)
【答案】B
【解析】解:因?yàn)楹瘮?shù)y=(m﹣1)x2+2mx+3是偶函數(shù),所以2m=0,即m=0.
所以函數(shù)y=(m﹣1)x2+2mx+3=﹣x2+3,
函數(shù)在(0,+∞)上單調(diào)遞減.
又f(﹣1)=f(1),f(﹣
)=f(
),
所以f(1)>f(
)>f(
),
即f(
)<f(﹣
)<f(﹣1),
故選B.
【考點(diǎn)精析】掌握函數(shù)奇偶性的性質(zhì)和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;當(dāng)
時(shí),拋物線開(kāi)口向上,函數(shù)在
上遞減,在
上遞增;當(dāng)
時(shí),拋物線開(kāi)口向下,函數(shù)在
上遞增,在
上遞減.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓
的方程為
.
(1)求直線
的普通方程和圓
的圓心的極坐標(biāo);
(2)設(shè)直線
和圓
的交點(diǎn)為
、
,求弦
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,其中
是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)令
,討論
的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)函數(shù)
,
,求函數(shù)
的最小值;
(2)對(duì)任意
,都有
成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
,證明:對(duì)任意的實(shí)數(shù)
,都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有一個(gè)容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價(jià)格是鐵的3倍,當(dāng)總造價(jià)最少時(shí),桶高為( )
A.
![]()
B.
![]()
C.2 ![]()
D.2 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓
=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過(guò)橢圓中心的弦PQ滿足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面積為1.
(1)求橢圓的方程;
(2)直線l不經(jīng)過(guò)點(diǎn)A(0,1),且與橢圓交于M,N兩點(diǎn),若以MN為直徑的圓經(jīng)過(guò)點(diǎn)A,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2
+
sinωx﹣
(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒(méi)有零點(diǎn),則ω的取值范圍是( )
A.(0,
]
B.(0,
]∪[
,
)
C.(0,
]
D.(0,
]∪[
,
]
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com