【題目】已知函數(shù)f(x)=lg
的圖象關(guān)于原點(diǎn)對稱,其中a為常數(shù).
(Ⅰ)求a的值,并求出f(x)的定義域
(Ⅱ)關(guān)于x的方程f(2x)+21g(2x-1)=a在x∈[
,
]有實(shí)數(shù)解,求a的取值范圍.
【答案】(Ⅰ)a=-1,定義域(-∞,-1)∪(1,+∞)(Ⅱ)a∈[0,lg7].
【解析】
(Ⅰ)根據(jù)奇函數(shù)的定義即可求出a的值,根據(jù)對數(shù)函數(shù)的解析式,即可求出函數(shù)的定義域,
(Ⅱ)關(guān)于x的方程f(2x)+21g(2x-1)=a在x∈[
]有實(shí)數(shù)解,轉(zhuǎn)化為lg(22x-1)=a在x∈[
]有實(shí)數(shù)解,根據(jù)函數(shù)的單調(diào)性,求出y=lg(22x-1)的值域即可求出a的范圍
(Ⅰ)∵函數(shù)f(x)=lg
的圖象關(guān)于原點(diǎn)對稱,
∴函數(shù)f(x)=lg
為奇函數(shù),即f(-x)+f(x)=0,
∴
,且a≠1
∴l(xiāng)g
=0,
∴
=1,
整理可得,(a2-1)x2=0恒成立,
∴a=1(舍)或a=-1,f(x)=lg
,
由
>可得,x<-1或x>1,
即函數(shù)的定義域(-∞,-1)∪(1,+∞),
(Ⅱ)設(shè)2x=t,則t∈[
,2
],
∵關(guān)于x的方程f(2x)+21g(2x-1)=a在x∈[
,
]有實(shí)數(shù)解,
∴l(xiāng)g
+21g(2x-1)=lg(2x+1)(2x-1)=lg(22x-1)=a在x∈[
,
]有實(shí)數(shù)解,
設(shè)u=22x-1,則u(x)為增函數(shù),y=lgu為增函數(shù),
∴y=lg(22x-1)在[
,
]上為增函數(shù),
∴0≤y≤lg7,
∴a∈[0,lg7].
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
滿足:①圓心在第一象限,截
軸所得弦長為2;②被
軸分成兩段圓弧,其弧長的比為
;③圓心到直線
的距離為
.
(Ⅰ)求圓
的方程;
(Ⅱ)若點(diǎn)
是直線
上的動點(diǎn),過點(diǎn)
分別做圓
的兩條切線,切點(diǎn)分別為
,
,求證:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列四個命題:
若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
垂直于同一直線的兩條直線相互平行;
若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中,為真命題的是
![]()
A.
和
B.
和
C.
和
D.
和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
![]()
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,![]()
(1)求證:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
離心率為
,
,
是橢圓的左、右焦點(diǎn),以
為圓心,
為半徑的圓和以
為圓心、
為半徑的圓的交點(diǎn)在橢圓
上.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的下頂點(diǎn)為
,直線
與橢圓
交于兩個不同的點(diǎn)
,是否存在實(shí)數(shù)
使得以
為鄰邊的平行四邊形為菱形?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
關(guān)于
軸對稱,頂點(diǎn)在坐標(biāo)原點(diǎn)
,直線
經(jīng)過拋物線
的焦點(diǎn).
(1)求拋物線
的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)
的直線
與拋物線
相交于不同的兩點(diǎn)
,
,且滿足
,證明直線
過
軸上一定點(diǎn)
,并求出點(diǎn)
的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com