【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系
的原點(diǎn),極軸為
軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線
的極坐標(biāo)方程為
,
.
(Ⅰ)求曲線
的直角坐標(biāo)方程;
(Ⅱ)在曲線
上求一點(diǎn),使它到直線
:
(
為參數(shù))的距離最短,寫出
點(diǎn)的直角坐標(biāo).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
,即
,若
,則稱
在
上封閉.
(1)分別判斷函數(shù)
,
在
上是否封閉,說明理由;
(2)函數(shù)
的定義域?yàn)?/span>
,且存在反函數(shù)
,若函數(shù)
在
上封閉,且函數(shù)
在
上也封閉,求實(shí)數(shù)
的取值范圍;
(3)已知函數(shù)
的定義域?yàn)?/span>
,對(duì)任意
,若
,有
恒成立,則稱
在
上是單射,已知函數(shù)
在
上封閉且單射,并且滿足
,其中
(
),
,證明:存在
的真子集, ![]()
![]()
![]()
![]()
![]()
,使得
在所有
(
)上封閉.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
為正三角形,
,
,
,
平面
.
![]()
(Ⅰ)點(diǎn)
在棱
上,試確定點(diǎn)
的位置,使得
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),若存在
,使得
,求實(shí)數(shù)
的取值范圍;
(2)若
為正整數(shù),方程
的兩個(gè)實(shí)數(shù)根
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC的外接圓的O半徑為
,CD垂直于外接圓所在的平面,
![]()
(1)求證:平面
平面
.
(2)試問線段
上是否存在點(diǎn)
,使得直線
與平面
所成角的正弦值為
?若存在,確定點(diǎn)
的位置,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分13分)已知函數(shù)
,
.
(Ⅰ)求函數(shù)
的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今有一組數(shù)據(jù)如下表:
| 1 | 2 | 3 | 4 | 5 | 6 |
| 4 | 5 | 6 | 7 | 8 | 9 |
| 90 | 84 | 83 | m | 75 | 68 |
由最小二乘法求得點(diǎn)
的回歸直線方程是
,其中
.
(Ⅰ)求m的值,并求回歸直線方程;
(Ⅱ)設(shè)
,我們稱
為點(diǎn)
的殘差,記為
.
從所給的點(diǎn)
中任取兩個(gè),求其中有且只有一個(gè)點(diǎn)的殘差絕對(duì)值不大于1的概率.
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號(hào)為
的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號(hào)的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號(hào).
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號(hào)球 B. 一定沒有3號(hào)球 C. 可能有5號(hào)球 D. 可能有6號(hào)球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
是正整數(shù)
的任一排列,且同時(shí)滿足以下兩個(gè)條件:
①
;②當(dāng)
時(shí),
(
).
記這樣的數(shù)列個(gè)數(shù)為
.
(I)寫出
的值;
(II)證明
不能被4整除.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com