【題目】已知函數
,
(
為常數,且
).
(1)若當
時,函數
與
的圖象有且只要一個交點,試確定自然數
的值,使得
(參考數值
,
,
,
);
(2)當
時,證明:
(其中
為自然對數的底數).
【答案】(1)6;(2)見解析
【解析】分析:(1)記
,求得
,分
和
討論,即可得到函數的單調性和最小值
,函數
與
的圖象有且只有一個交點,得
,進而可求解
的取值范圍,確定
的值.
(2)由(1)得:當
時,只要證明:
時,
,
記
,求得
,
記
,利用二次函數的圖象與性質,即可作出證明.
詳解:(1)記
,則
,
當
時,因為
,
,函數
單調遞增,
,
函數
無零點,即函數
與
的圖象無交點;
當
時,
,且
時,
,
時,
,
所以,
,函數
與
的圖象有且只有一個交點,得
,
化簡得:
,
記
,
,所以
在
上單調遞減,
又
,
,
所以
,即
.
(2)由(1)得:當
時,
,只要證明:
時,
即
,
記
,
則
,
記
,
圖象為開口向上的拋物線,對稱軸為
,
且
,所以當
時,
,即
,
所以
在區間
上單調遞增,從而
,
即
成立,所以
成立.
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域是(0,+∞),且對任意正實數x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.
(1)求f(
)的值;
(2)判斷y=f(x)在(0,+∞)上的單調性并給出證明;
(3)解不等式f(2x)>f(8x-6)-1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生喜歡校內、校外開展活動的情況,某中學一課外活動小組在學校高一年級進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按
,
,
,
,
分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為
類學生,低于60分的稱為
類學生.
![]()
(1)根據已知條件完成下面
列聯表,能否在犯錯誤的概率不超過
的前提下認為性別與是否為
類學生有關系?
|
| 合計 | |
男 | 110 | ||
女 | 50 | ||
合計 |
(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中
類學生的人數為
,若每次抽取的結果是相互獨立的,求
的分布列、期望
和方差
.
參考公式:
,其中
.
參考臨界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著科技的發展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經常網購 | 偶爾或不用網購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?
(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優惠券,求選取的3人中至少有2人經常網購的概率;
②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為
,求隨機變量
的數學期望和方差.
參考公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,側面
底面
,底面
為直角梯形,其中
,
,
,
,
,
,點
在棱
上且
,點
為棱
的中點.
在棱
上且
,點
位棱
的中點.
(1)證明:平面
平面
;
(2)求二面角
的余弦值的大小.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為調查該校學生每周參加社會實踐活動的情況,隨機收集了若干名學生每周參加社會實踐活動的時間(單位:小時),將樣本數據繪制如圖所示的頻率分布直方圖,且在[0,2)內的學生有1人.
![]()
(1)求樣本容量
,并根據頻率分布直方圖估計該校學生每周參加社會實踐活動時間的平均值;
(2)將每周參加社會實踐活動時間在[4,12]內定義為“經常參加社會實踐”,參加活動時間在[0,4)內定義為“不經常參加社會實踐”.已知樣本中所有學生都參加了青少年科技創新大賽,有13人成績等級為“優秀”,其余成績為“一般”,其中成績優秀的13人種“經常參加社會實踐活動”的有12人.請將2×2列聯表補充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認為青少年科技創新大賽成績“優秀”與經常參加社會實踐活動有關;
(3)在(2)的條件下,如果從樣本中“不經常參加社會實踐”的學生中隨機選取兩人參加學校的科技創新班,求其中恰好一人成績優秀的概率.
參考公式和數據:
.
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com