數(shù)列
的前
項和記為![]()
(Ⅰ)求
的通項公式;
(Ⅱ)等差數(shù)列
的各項為正,其前
項和為
,且
,又
成等比數(shù)列,求![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
前三項的和為
,前三項的積為
.
(Ⅰ)求等差數(shù)列
的通項公式;
(Ⅱ)若
,
,
成等比數(shù)列,求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
,且不等式
對任意的實數(shù)
恒成立,數(shù)列
滿足
,![]()
.
(1)求
的值;
(2)求數(shù)列
的通項公式;
(3)求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項均為正實數(shù)的數(shù)列
的前
項和為
,且滿足
(
).
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)設(shè)數(shù)列
的通項公式為
(
),若
,
,
(
)成等差數(shù)列,求
和
的值;
(Ⅲ)證明:存在無窮多個三邊成等比數(shù)列且互不相似的三角形,其三邊長為數(shù)列
中的三項
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{
}中,a1=3,
,
(1)求a1、a2、a3、a4;
(2)用合情推理猜測
關(guān)于n的表達(dá)式(不用證明);
(3)用合情推理猜測{
}是什么類型的數(shù)列并證明;
(4)求{
}的前n項的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知數(shù)列
滿足
.
(Ⅰ)證明數(shù)列
是等差數(shù)列;
(Ⅱ)求數(shù)列
的通項公式;
(Ⅲ)設(shè)
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{
}的前n項和為
,且
=1,
,數(shù)列{
}滿足
,點P(
,
)在直線x―y+2=0上,
.
(1)求數(shù)列{
},{
}的通項公式;
(2)設(shè)
,求數(shù)列{
}的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 正項數(shù)列{an}滿足a1=2,點An(
)在雙曲線y2-x2=1上,點(
)在直線y=-
x+1上,其中Tn是數(shù)列{bn}的前n項和。
①求數(shù)列{an}、{bn}的通項公式;
②設(shè)Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)數(shù)列
中,
,
![]()
(1)求證:
時,
是等比數(shù)列,并求
通項公式。
(2)設(shè)
,
,
求:數(shù)列
的前n項的和
。
(3)設(shè)
、
、
。記
,數(shù)列
的前n項和
。證明:
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com