(本小題12分) 正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An(
)在雙曲線y2-x2=1上,點(diǎn)(
)在直線y=-
x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和。
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。
(1) an=n+1,![]()
(2)利用單調(diào)性法加以證明。
(3) m的最小值為10
解析試題分析:① 由已知點(diǎn)An在y2-x2=1上知,an+1-an=1,
∴數(shù)列{an}是一個(gè)以2為首項(xiàng),以1為公差的等差數(shù)列。
∴an=n+1
∵點(diǎn)(
)在直線y=-
x+1上
∴Tn=-
bn+1 ①
∴Tn-1=-
bn-1+1 ②
①②兩式相減得bn=-
bn+
bn-1
∴![]()
令n=1得 ![]()
∴
,
。
∴![]()
![]()
②![]()
∴![]()
=![]()
=![]()
=
<0,
∴
<![]()
③ ∵
而m>7
恒成立 ∴m>7c1=
而
∴m的最小值為10。
考點(diǎn):本試題考查了數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求解運(yùn)用。
點(diǎn)評(píng):對(duì)于數(shù)列圖像的求解,該試題以函數(shù)為背景建立了遞推關(guān)系式,進(jìn)而得到是等差數(shù)列,同時(shí)能借助于通項(xiàng)公式與前n項(xiàng)和的關(guān)系式,整體的思想求解通項(xiàng)公式,這是重要的一點(diǎn)。而對(duì)于錯(cuò)位相減法求和需要熟練掌握,找到容易出錯(cuò)的細(xì)節(jié)就是最后一步的合并,要細(xì)心點(diǎn),屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前
項(xiàng)和記為![]()
(Ⅰ)求
的通項(xiàng)公式;
(Ⅱ)等差數(shù)列
的各項(xiàng)為正,其前
項(xiàng)和為
,且
,又
成等比數(shù)列,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列
的前 n項(xiàng)和為
,滿足
,且
.
(Ⅰ)求
,
;
(Ⅱ)若
,求證:數(shù)列
是等比數(shù)列。
(Ⅲ)若
, 求數(shù)列
的前n項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中
。
對(duì)自然數(shù)k,規(guī)定
為{an}的k階差分?jǐn)?shù)列,其中
。
(1)已知數(shù)列{an}的通項(xiàng)公式
,試判斷
是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項(xiàng)a1=1,且滿足
,求數(shù)列{an}的通項(xiàng)公式。
(3)對(duì)(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得
對(duì)一切自然
都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列
中,
,數(shù)列
滿足
。
(1)求證:數(shù)列
是等差數(shù)列;
(2)求數(shù)列
中的最大項(xiàng)和最小項(xiàng),并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在數(shù)列
中,
,并且對(duì)于任意n∈N*,都有
.
(1)證明數(shù)列
為等差數(shù)列,并求
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前n項(xiàng)和為
,求使得
的最小正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列
的前n項(xiàng)和
滿足
(
>0,且
)。數(shù)列
滿足![]()
(I)求數(shù)列
的通項(xiàng)。
(II)若對(duì)一切
都有
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知數(shù)列{
}滿足
,
(I)寫出
,并推測
的表達(dá)式;
(II)用數(shù)學(xué)歸納法證明所得的結(jié)論。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com