【題目】隨著現(xiàn)代電子技術的迅猛發(fā)展,關于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學科——可靠性理論.在可靠性理論中,一個元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有
(
,
)種電子元件,每種2個,每個元件的可靠性均為
(
).當某元件不能正常工作時,該元件在電路中將形成斷路.現(xiàn)要用這
個元件組成一個電路系統(tǒng),有如下兩種連接方案可供選擇,當且僅當從A到B的電路為通路狀態(tài)時,系統(tǒng)正常工作.
![]()
(1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性
、
(用
和
表示);
(ii)比較
與
的大小,說明哪種連接方案更穩(wěn)定可靠;
(2)設
,
,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時系統(tǒng)中損壞的元件個數(shù)為
,求隨機變量
的分布列和數(shù)學期望.
【答案】(1)(i)
,
(ii)
,按方案②建立的電路系統(tǒng)更穩(wěn)定可靠.(2)見解析,![]()
【解析】
(1)(i)利用對立事件的概率公式計算,
個元件串聯(lián)通路的概率是
,而
個元件并聯(lián)時不通的概率是
,由此可計算可計算方案①和方案②建立的電路系統(tǒng)的可靠性
、
;(ii)作差后構造函數(shù)
,利用導數(shù)可得其單調性從而得
與
的大小,得出結論;
(2)在方案②電路系統(tǒng)可以正常工作的條件下,元件損壞的概率是條件概率,可計算編號相同的兩個并聯(lián)元件中至多有一個損壞,且有一個損壞的條件概率為
,由此可知,
,依次計算出各概率,得分布列,再由二項分布計算出期望.
解:(1)(i)按方案①建立的電路系統(tǒng)的可靠性
;
按方案②建立的電路系統(tǒng)的可靠性為
;
(ii)
.
令
,
且
,則
.
當
時,
,從而
,所以
在
上單調遞增;
當
時,
,即
.
所以,
,按方案②建立的電路系統(tǒng)更穩(wěn)定可靠.
(2)在方案②電路系統(tǒng)可以正常工作的條件下,編號相同的兩個并聯(lián)元件中至多有一個損壞,且有一個損壞的條件概率為
,由此可知,
.
,
,
,
,
;
所以,隨機變量
的分布列為
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,其中e為自然對數(shù)的底數(shù).
(1)若函數(shù)
的極小值為
,求
的值;
(2)若
,證明:當
時,
成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知定點F(1,0),點A在x軸的非正半軸上運動,點B在y軸上運動,滿足
0,A關于點B的對稱點為M,設點M的軌跡為曲線C.
(1)求C的方程;
(2)已知點G(3,﹣2),動直線x=t(t>3)與C相交于P,Q兩點,求過G,P,Q三點的圓在直線y=﹣2上截得的弦長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,
,E為PB中點.
![]()
(Ⅰ)求證:PD∥平面ACE;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F是拋物線
的焦點,若點
在拋物線C上,且![]()
(1)求拋物線C的方程;
(2)動直線
與拋物線C相交于
兩點,問:在x軸上是否存在定點
(其中
),使得x軸平分
?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,國家為了鼓勵高校畢業(yè)生自主創(chuàng)業(yè),出臺了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動就業(yè).某高校畢業(yè)生小李自主創(chuàng)業(yè)從事海鮮的批發(fā)銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經(jīng)營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數(shù)分布條形圖.
![]()
(1)若小李一天購進12箱基圍蝦.
①求當天的利潤
(單位:元)關于當天的銷售量
(單位:箱,
)的函數(shù)解析式;
②以這150天記錄的日銷售量的頻率作為概率,求當天的利潤不低于1900元的概率;
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù),他計劃今后每天購進基圍蝦的箱數(shù)相同,并在進貨量為11箱,12箱中選擇其一,試幫他確定進貨的方案,以使其所獲的日平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.
![]()
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用
表示點M的坐標,并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α
)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當
,|GH|,
依次成等差數(shù)列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
,過定點
的直線l與橢圓E相交于A,B兩點,C為橢圓的左頂點,當直線l過點
時,
(O為坐標原點)的面積為
.
(1)求橢圓E的方程;
(2)求證:當直線l不過C點時,
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由
個人依次出場解密,每人限定時間是
分鐘內(nèi),否則派下一個人.
個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲
次的測試記錄,繪制了如下的頻率分布直方圖.
![]()
(1)若甲解密成功所需時間的中位數(shù)為
,求
、
的值,并求出甲在
分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為
,其中
表示第
個出場選手解密成功的概率,并且
定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.
①求該團隊挑戰(zhàn)成功的概率;
②該團隊以
從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目
的分布列與數(shù)學期望.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com