【題目】如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點P在線段AD1上運動,給出以下命題:
![]()
①異面直線C1P與B1C所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④異面直線A1P與BC1間的距離為定值.
其中真命題的個數為________.
【答案】4
【解析】對于①,因為在棱長為1的正方體ABCD-A1B1C1D1中,點P在線段AD1上運動,
在正方體中有B1C⊥平面ABC1D1,而C1P平面ABC1D1,所以B1C⊥C1P,
所以這兩個異面直線所成的角為定值90°,故①正確;
對于②,因為二面角P-BC1-D為平面ABC1D1與平面BDC1所成的二面角,
而這兩個平面為固定不變的平面,
所以夾角也為定值,故②正確;
對于③,三棱錐D-BPC1的體積還等于三棱錐P-DBC1的體積,
而△DBC1面積一定,
又因為P∈AD1,而AD1∥平面BDC1,
所以點A到平面BDC1的距離即為點P到該平面的距離,
所以三棱錐的體積為定值,故③正確;
對于④,因為直線A1P和BC1分別位于平面ADD1A1,
平面BCC1B1中,且這兩個平面平行,
由異面直線間的距離定義及求法,
知這兩個平面間的距離即為所求的異面直線間的距離,
所以這兩個異面直線間的距離為定值,故④正確.
綜上知,真命題的個數為4.
科目:高中數學 來源: 題型:
【題目】如果函數y=f(x)的導函數的圖象如圖所示,給出下列判斷:
![]()
①函數y=f(x)在區間
內單調遞增;
②函數y=f(x)在區間
內單調遞減;
③函數y=f(x)在區間(4,5)內單調遞增;
④當x=2時,函數y=f(x)有極小值;
⑤當x=
時,函數y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在[-1,1]上的奇函數,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數f(x)的解析式;并判斷f(x)在[-1,1]上的單調性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(其中e是自然對數的底數,常數a>0).
(1)當a=1時,求曲線在(0,f(0))處的切線方程;
(2)若存在實數x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點,求三棱錐B-DEG的體積.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
(
為自然對數的底數).
(Ⅰ)當
時,求函數
在點
處的切線方程;
(Ⅱ)若函數
有兩個零點,試求
的取值范圍;
(Ⅲ)當
時,
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com