【題目】如圖,正三棱柱ABC﹣A1B1C1的各棱長相等,點D是棱CC1的中點,則AA1與面ABD所成角的大小是 ![]()
【答案】60°
【解析】解:正三棱柱ABC﹣A1B1C1的各棱長相等,點D是棱CC1的中點,
設棱長為2,以ABC平面內AC順時針旋轉90°得到的直線為x軸,以AC為y軸,以AA1為z軸,
建立如圖所示的空間直角坐標系,
則A(0,0,0),B(2sin30°,2sin60°,0)=(
, 1,0),D(0,2,1),A1(0,0,2),
∴
=(0,0,2),
=(0,2,1),
=(
, 1,0),
設平面ABD的法向量為
=(x,y,z),
則
,
∴
, 解得
=(
, ﹣3,6),
設AA1與面ABD所成角為θ,
則
.
∴θ=60°.
故AA1與面ABD所成角的大小是60°.
所以答案是:60°.![]()
【考點精析】本題主要考查了用空間向量求直線與平面的夾角的相關知識點,需要掌握設直線
的方向向量為
,平面
的法向量為
,直線與平面所成的角為
,
與
的夾角為
, 則
為
的余角或
的補角的余角.即有:
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某企業甲,乙兩個研發小組,他們研發新產品成功的概率分別為
和
,現安排甲組研發新產品
,乙組研發新產品
.設甲,乙兩組的研發是相互獨立的.
(1)求至少有一種新產品研發成功的概率;
(2)若新產品
研發成功,預計企業可獲得
萬元,若新產品
研發成功,預計企業可獲得利潤
萬元,求該企業可獲得利潤的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為 .
①點P在圓C內部;
②過點P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點P出發,經x軸反射到圓C上的最短路程為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4及圓內一點P(2,5).
(1)求過P點的弦中,弦長最短的弦所在的直線方程;
(2)求過點M(5,0)與圓C相切的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人用擂臺賽形式進行訓練.每局兩人單打比賽,另一人當裁判.每一局的輸方去當下一局的裁判,而由原來的裁判向勝者挑戰.半天訓練結束時,發現甲共打
局,乙共打
局,而丙共當裁判
局.那么整個比賽的第
局的輸方( )
A. 必是甲 B. 必是乙 C. 必是丙 D. 不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校準備從高一年級的兩個男生
和三個女生
中選擇2個人去參加一項比賽.
(1)若從這5個學生中任選2個人,求這2個人都是女生的概率;
(2)若從男生和女生中各選1個人,求這2個人包括
,但不包括
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱A1B1C1D1﹣ABCD中,當底面四邊形ABCD滿足條件 時,有A1C⊥B1D1 . (注:填上你認為正確的一種條件即可,不必考慮所有可能的情形.)![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com