【題目】共享單車因綠色、環保、健康的出行方式,在國內得到迅速推廣.最近,某機構在某地區隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經常騎共享單車出行”的人數為
,求
的分布列與數學期望.
科目:高中數學 來源: 題型:
【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數據統計如下表,其中“√”表示參加,“×”表示未參加.
![]()
(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求
的值;
(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合
,定義了一種運算“
”,使得集合
中的元素間滿足條件:如果存在元素
,使得對任意
,都有
,則稱元素
是集合
對運算“
”的單位元素.例如:
,運算“
”為普通乘法;存在
,使得對任意
,都有
,所以元素
是集合
對普通乘法的單位元素.
下面給出三個集合及相應的運算“
”:
①
,運算“
”為普通減法;
②
{
表示
階矩陣,
},運算“
”為矩陣加法;
③
(其中
是任意非空集合),運算“
”為求兩個集合的交集.
其中對運算“
”有單位元素的集合序號為( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,
為圓柱
的母線,
是底面圓
的直徑,
是
的中點.
![]()
(Ⅰ)問:
上是否存在點
使得
平面
?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若
平面
,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐
外會有被捕的危險,求小魚被捕的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
,
(
).
(1)當
時,若函數
與
的圖象在
處有相同的切線,求
的值;
(2)當
時,若對任意
和任意
,總存在不相等的正實數
,使得
,求
的最小值;
(3)當
時,設函數
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將圓
上每個點的橫坐標變為原來的4倍,縱坐標變為原來的3倍,得曲線
,以坐標原點為極點,
軸的非負軸分別交于
半軸為極軸建立極坐標系,直線
的極坐標方程為:
,且直線
在直角坐標系中與
軸分別交于
兩點.
(1)寫出曲線
的參數方程,直線
的普通方程;
(2)問在曲線
上是否存在點
,使得
的面積
,若存在,求出點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓
經過
為坐標原點,線段
的中點在圓
上.
(1)求
的方程;
(2)直線
不過曲線
的右焦點
,與
交于
兩點,且
與圓
相切,切點在第一象限,
的周長是否為定值?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com