已知橢圓
的離心率為
,且經過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點
的直線與橢圓交于
兩點(
點與
點不重合),
①求
的值;
②當
為等腰直角三角形時,求直線
的方程.
(Ⅰ)橢圓的方程為
;(Ⅱ) ①
;②直線
的方程為
或
或
.
解析試題分析:(Ⅰ)由
與離心率為
,可求出方程;(Ⅱ) ①要求
的值,可設直線
的方程,采用設而不求的方法求得;②由①知:
,如果
為等腰直角三角形,設
的中點為
,則
,利用
可求出
的值,從而求出直線
的方程為.
試題解析:(Ⅰ)因為橢圓經過點
,
,因為
,解得
,
所以橢圓的方程為
.
(Ⅱ)①若過點
的直線的斜率不存在,此時
兩點中有一個點與
點重合,不滿足題目條件.
所以直線
的斜率存在,設其斜率為
,則
的方程為
,把
代入橢圓方程得
,設
,則
,
,
,
因為
,所以![]()
![]()
,
②由①知:
,如果
為等腰直角三角形,設
的中點為
,則
,且![]()
,
若
,則
,顯然滿足
,此時直線
的方程為
;
若
,則
,解得
,所以直線
的方程為
,即
或
.
綜上所述:直線
的方程為
或
或
.
考點:1、求橢圓方程,2、直線與二次曲線的位置關系.
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在
軸上,且過點
.![]()
(1)求拋物線的標準方程;
(2)與圓
相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足![]()
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動圓C經過點
,且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點
的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當△ABC的面積為
時,求直線m的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點
與定點
的距離和它到直線
的距離之比是常數
,記
的軌跡為曲線
.
(I)求曲線
的方程;
(II)設直線
與曲線
交于
兩點,點
關于
軸的對稱點為
,試問:當
變化時,直線
與
軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
的左、右焦點分別為F1(-1,0),F2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足
,
為坐標原點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點
且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點
與圓
相切的直線
與
的另一交點為
,且
的面積等于
,求橢圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標平面內,y軸右側的一動點P到點
的距離比它到
軸的距離大![]()
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設
為曲線
上的一個動點,點
,
在
軸上,若
為圓
的外切三角形,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知
,直線
, 動點
到
的距離是它到定直線
距離的
倍. 設動點
的軌跡曲線為
.
(1)求曲線
的軌跡方程.
(2)設點
, 若直線
為曲線
的任意一條切線,且點
、
到
的距離分別為
,試判斷
是否為常數,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com