在直角坐標系xOy中,已知點P
,曲線C的參數方程為
(φ為參數)。以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
。
(1)判斷點P與直線l的位置關系,說明理由;
(2)設直線l與直線C的兩個交點為A、B,求
的值。
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點與橢圓
的右焦點重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點
與拋物線
交于A、B兩點,與
軸交于C點,請你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構成等比數列?說明你的結論并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點
,焦點在x軸上,離心率為
的橢圓過點(
,
).![]()
(1)求橢圓的方程;
(2)設不過原點
的直線與該橢圓交于
、
兩點,滿足直線
,
,
的斜率依次成等比數列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直角坐標系
中,一直角三角形
,
,B、D在
軸上且關于原點
對稱,
在邊
上,BD=3DC,△ABC的周長為12.若一雙曲線
以B、C為焦點,且經過A、D兩點.![]()
⑴ 求雙曲線
的方程;
⑵ 若一過點
(
為非零常數)的直線
與雙曲線
相交于不同于雙曲線頂點的兩點
、
,且
,問在
軸上是否存在定點
,使
?若存在,求出所有這樣定點
的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線
與橢圓
交于
,
兩點,已知![]()
,![]()
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線
的焦點在拋物線
上,點
是拋物線
上的動點.![]()
(Ⅰ)求拋物線
的方程及其準線方程;
(Ⅱ)過點
作拋物線
的兩條切線,
、
分別為兩個切點,設點
到直線
的距離為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為
.![]()
(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段
所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
為
軸上的動點,點
為
軸上的動點,點
為定點,且滿足
,
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)過點
且斜率為
的直線
與曲線
交于兩點
,
,試判斷在
軸上是否存在點
,使得
成立,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com