如圖,已知拋物線
的焦點在拋物線
上,點
是拋物線
上的動點.![]()
(Ⅰ)求拋物線
的方程及其準線方程;
(Ⅱ)過點
作拋物線
的兩條切線,
、
分別為兩個切點,設點
到直線
的距離為
,求
的最小值.
科目:高中數學 來源: 題型:解答題
已知,橢圓C以過點A(1,
),兩個焦點為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F1,F2是離心率為
的橢圓C:
(a>b>0)的左、右焦點,直線
:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是橢圓C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.![]()
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,已知點P
,曲線C的參數方程為
(φ為參數)。以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
。
(1)判斷點P與直線l的位置關系,說明理由;
(2)設直線l與直線C的兩個交點為A、B,求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
=1(a>b>0)的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D. ![]()
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
圓C的圓心在y軸上,且與兩直線l1:
;l2:
均相切.
(I)求圓C的方程;
(II)過拋物線
上一點M,作圓C的一條切線ME,切點為E,且
的最小值為4,求此拋物線準線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4-4:坐標系與參數方程
在直角坐標系
中,直線L的方程為x-y+4=0,曲線C的參數方程為![]()
(1)求曲線C的普通方程;
(2)設點Q是曲線C上的一個動點,求它到直線L的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,設點
、
分別是橢圓
的左、右焦點,
為橢圓
上任意一點,且
最小值為
.![]()
(1)求橢圓
的方程;
(2)若動直線
均與橢圓
相切,且
,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com