【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|<
)的最小正周期是π,若將其圖象向右平移
個單位后得到的圖象關于原點對稱,則函數f(x)的圖象( )
A.關于直線x=
對稱
B.關于直線x=
對稱
C.關于點(
,0)對稱
D.關于點(
,0)對稱
科目:高中數學 來源: 題型:
【題目】設不等式x2+y2≤4確定的平面區域為U,|x|+|y|≤1確定的平面區域為V.
(1)定義橫、縱坐標為整數的點為“整點”,在區域U內任取3個整點,求這些整點中恰有2個整點在區域V的概率;
(2)在區域U內任取3個點,記這3個點在區域V的個數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鎮在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發展養殖業,以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養魚,乙合作社養雞,在對市場進行調研分析發現養魚的收益
、養雞的收益
與投入
(單位:萬元)滿足
.設甲合作社的投入為
(單位:萬元).兩個合作社的總收益為
(單位:萬元).
(1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=
+lnx在[1,+∞)上為增函數,且θ∈(0,π),f(x)=mx﹣
﹣lnx(m∈R). (Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上為單調函數,求m的取值范圍;
(Ⅲ)設h(x)=
,若在[1,e]上至少存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地空氣中出現污染,須噴灑一定量的去污劑進行處理.據測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為
,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?
(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑
個單位的去污劑,要使接下來的4天中能夠持續有效去污,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C過點
,且與圓M:
關于直線
對稱.
求圓C的方程;
過點P作兩條相異直線分別與圓C相交于點A和點B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
的底面ABCD是正方形,
為等邊三角形,M,N分別是AB,AD的中點,且平面
平面ABCD.
![]()
證明:
平面PNB;
設點E是棱PA上一點,若
平面DEM,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com