【題目】已知圓C:
,直線
:![]()
(1)求證:直線
過(guò)定點(diǎn);
(2)判斷該定點(diǎn)與圓的位置關(guān)系;
(3)當(dāng)m為何值時(shí),直線
被圓C截得的弦最長(zhǎng).
【答案】(1)證明見解析(2)直線l與圓C總相交.(3)![]()
【解析】
(1)由題意可知:
,則
,即可求得
點(diǎn)坐標(biāo),直線
過(guò)定點(diǎn);
(2)由
坐標(biāo)代入圓
的方程,得左邊
右邊,點(diǎn)
在圓
內(nèi);
(3)當(dāng)直線
經(jīng)過(guò)圓心
時(shí),被截得的弦最長(zhǎng),可知直線
的斜率
,由
,則
,即可求得
的值.
(1)證明:將直線
,
整理得:
,
由于
的任意性,則
,解得
,
直線
恒過(guò)定點(diǎn)
;
(2)把點(diǎn)
坐標(biāo)代入圓
的方程,得左邊
右邊,
點(diǎn)
在圓
內(nèi);
(3)當(dāng)直線
經(jīng)過(guò)圓心
時(shí),被截得的弦最長(zhǎng)(等于圓的直徑長(zhǎng)),
此時(shí),直線
的斜率
,
由直線
的方程得
,
由點(diǎn)
、
的坐標(biāo)得
,
,解得:
,
所以,當(dāng)
,時(shí),直線
被圓
截得的弦最長(zhǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若函數(shù)
在
處取得極大值,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,
(1)若直線
過(guò)定點(diǎn)
,且與圓C相切,求
的方程.
(2)若圓D的半徑為3,圓心在直線
上,且與圓C外切,求圓D的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的一段圖象如圖所示.
![]()
(1)求該函數(shù)的解析式;
(2)求該函數(shù)的單調(diào)增區(qū)間;
(3)該函數(shù)的圖象可由
的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若樣本數(shù)據(jù)
的方差為
,則數(shù)據(jù)
的方差為
;
②“平面向量
的夾角為銳角,則
”的逆命題為真命題;
③命題“
,均有
”的否定是“
,均有
”;
④
是直線
與直線
平行的必要不充分條件.
其中正確的命題個(gè)數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是圓
內(nèi)一個(gè)定點(diǎn),
是圓上任意一點(diǎn).線段
的垂直平分線和半徑
相交于點(diǎn)
.
![]()
(Ⅰ)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),點(diǎn)
的軌跡
是什么曲線?并求出其軌跡方程;
(Ⅱ)過(guò)點(diǎn)
作直線
與曲線
交于
、
兩點(diǎn),點(diǎn)
關(guān)于原點(diǎn)
的對(duì)稱點(diǎn)為
,求
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年為我國(guó)改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 |
|
|
|
|
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列
列聯(lián)表,并回答能否有
的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?
熱衷關(guān)心民生大事 | 不熱衷關(guān)心民生大事 | 總計(jì) | |
青年 | 12 | ||
中年 | 5 | ||
總計(jì) | 30 |
(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長(zhǎng)歌舞,3人擅長(zhǎng)樂器)中,隨機(jī)抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
).當(dāng)點(diǎn)
在函數(shù)
圖象上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)
在函數(shù)
圖象上運(yùn)動(dòng),則稱函數(shù)
是函數(shù)
的相關(guān)函數(shù).
(1)解關(guān)于
的不等式
;
(2)對(duì)任意的
,
的圖象總在其相關(guān)函數(shù)圖象的下方,求
的取值范圍;
(3)設(shè)函數(shù)
,
.當(dāng)
時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S一ABC中,SA=AB=AC=BC=
SB=
SC,O為BC的中點(diǎn)
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點(diǎn)E,使二面角B—SC-E的平面角的余弦值為
?若存在,求
的值,若不存在,試說(shuō)明理由
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com